THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Итак, для определения стоимости собственности, приносящей до ход, необходимо определить текущую стоимость денег, которые будут получены через какоето время в будущем.

Известно, а в условиях инфляции куда более очевидно, что деньги изменяют свою стоимость с течением времени. Основными операциями, позволяющими сопоставить разновременные деньги, являются операции накопления (наращивания) и дисконтирования.

Накопление – это процесс приведения текущей стоимости денег к их будущей стоимости, при условии, что вложенная сумма удерживается на счету в течение определенного времени, принося периодически нака пливаемый процент.

Дисконтирование – это процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

В оценке эти финансовые расчеты базируются на сложном процессе, когда каждое последующее начисление ставки процента осуществля ется как на основную сумму, так и на начисленные за предыдущие периоды невыплаченные проценты.

Всего рассматривают шесть функций денежной единицы, основанных на сложном проценте. Для упрощения расчетов разработаны таблицы шести функций для известных ставок дохода и периода накопления (I и n), кроме того, можно воспользоваться финансовым калькуля тором для расчета искомой величины.

1 функция: Будущая стоимость денежной единицы (накопленная сумма денежной единицы), (fvf , i , n).


Если начисления осуществляются чаще, чем один раз в год, то формула преобразуется в следующую:

k – частота накоплений в год.

Данная функция используется в том случае, когда известна текущая стоимость денег и необходимо определить будущую стоимость де нежной единицы при известной ставке доходов на конец определенного периода (n).

Занятия Форекс - это чудесная для Тебя подготовиться к успешной работе на международном валютном рынке Форекс!

Правило 72х

Для примерного определения срока удвоения капитала (в годах) необходимо 72 разделить на целочисленное значение годовой ставки до хода на капитал. Правило действует для ставок от 3 до 18%.

Типичным примером для будущей стоимости денежной единицы может служить задача.

Определить, какая сумма будет накоплена на счете к концу 3го

года, если сегодня положить на счет, приносящий 10% годовых, 10 000

FV=10000[(1+0,1) 3 ]=13310.

2 функция : Текущая стоимость единицы (текущая стоимость реверсии (перепродажи)), (pvf , i , n).

Текущая стоимость единицы является обратной относительно бу дущей стоимости.

Если начисление процентов осуществляется чаще, чем один раз в год, то

Примером задачи может служить следующая: Сколько нужно вложить сегодня, чтобы к концу 5го года получить на счете 8000, если годовая ставка дохода 10%.


3 функция : Текущая стоимость аннуитета (pvaf , i , n).

Аннуитет – это серия равновеликих платежей (поступлений), отстоящих друг от друга на один и тот же промежуток времени.

Выделяют обычный и авансовый аннуитеты. Если платежи осуще ствляются в конце каждого периода, то аннуитет обычный, если в начале – авансовый.

Формула текущей стоимости обычного аннуитета:

PMT – равновеликие периодические платежи. Если частота начислений превышает 1 раз в год, то

Формула текущей стоимости авансового аннуитета:

Типовой пример:

Договор аренды дачи составлен на 1 год. Платежи осуществляются ежемесячно по 1000 рублей. Определить текущую стоимость аренд ных платежей при 12% ставке дисконтирования, если а) платежи осуществляются в конце месяца; б) платежи осуществляются в начале каждого месяца.


4 функция : Накопление денежной единицы за период (fvfa , i , n).

В результате использования данной функции определяется буду щая стоимость серии равновеликих периодических платежей (поступле ний).

Платежи также могут осуществляться в начале и в конце периода.

Формула обычного аннуитета:

Типовой пример:

Определить сумму, которая будет накоплена на счете, приносящем 12% годовых, к концу 5го года, если ежегодно откладывать на счет 10 000 рублей а) в конце каждого года; б) в начале каждого года.

5 функция : Взнос на амортизацию денежной единицы (iaof , i , n) Функция является обратной величиной текущей стоимости обыч ного аннуитета. Взнос на амортизацию денежной единицы используется для определения величины аннуитетного платежа в счет погашения кредита, выданного на определенный период при заданной ставке по креди ту.

Амортизация – это процесс, определяемый данной функцией, включает проценты по кредиту и оплату основной суммы долга.


При платежах, осуществляемых чаще, чем 1 раз в год используется следующая формула:

Примером может служить следующая задача: Определить, каким должны быть платежи, чтобы к концу 7го года погасить кредит в 100 000 рублей, выданный под 15% годовых.

6 функция : Фактор фонда возмещения (sff , i , n)

Данная функция обратна функции накопления единицы за период. Фактор фонда возмещения показывает аннуитетный платеж, который необходимо депонировать под заданный процент в конце каждого пе риода для того, чтобы через заданное число периодов получить искомую сумму.

Для определения величины платежа используется формула:

При платежах (поступлениях), осуществляемых чаще, чем 1 раз в год:

Примером может служить задача.

Определить, какими должны быть платежи, чтобы к концу 5го го да иметь на счете, приносящем 12% годовых, 100 000 рублей. Платежи осуществляются в конце каждого года.

Аннуитетный платеж, определяемый данной функцией, включает выплату основной суммы без выплат процента.

Основой финансовой математики являются следующие шесть функций

сложного процента (или шесть функций денег):

1. Будущая стоимость единицы (накопленная сумма единицы) – FV (Future value ).

2. Будущая стоимость аннуитета (накопление единицы за период) – FVA (Future value of an annuity ).

3. Фактор фонда возмещения (периодический взнос в фонд накопления) – SFF (Sinking fund factor ).

4.Текущая стоимость единицы (дисконтирование, реверсия) – PV (Present value ).

5.Текущая стоимость аннуитета – PVA (Present value of annuity ).

6.Взнос на амортизацию единицы – IAO (Installment of amortize one ).

Эти функции используются в различных финансовых расчетах. Рассмотрим каждую из этих функций с точки зрения ее математической формулировки и сферы применения.

Функции наращения

Будущая стоимость денежной единицы (накопленная сумма единицы)

Данная функция позволяет определить будущую стоимость инвестированной денежной единицы, исходя из предполагаемых: ставки дохода (r), срока накопления (n) и периодичности (частоты) начисления процента (m):

FV = PV * (1+ r)n = PV * FМ1(r, n),

где FV – будущая стоимость денег;

PV – текущая стоимость денег;

r – ставка дохода;

n – число периодов накопления.

FМ1(r, n) = (1+ r)n – мультиплицирующий множитель, значения которого рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах. Иногда его обозначают как FVIF (от англ. Future Value Interest Factor – процентный множитель будущей стоимости).

Экономический смысл множителя FМ1(r, n) состоит в том, что он показывает, чему будет равна одна денежная единица через (n) периодов при заданной процентной ставке (r). Справедливость формулы очевидна (рисунок 6.7).

Если на депозит положена сумма PV, то через один период начисления эта сумма станет равна:

FV1= PV + PV * r = PV * (1 + r),

через два периода она станет равна:

FV2= FV1+ FV1* r = FV1* (1+ r) = PV (1 + r)2,

FVn= FVn−1 + FVn−1* r = FVn−1* (1+ r) = PV (1 + r)n.

Рисунок 6.7 – Будущая стоимость денежной единицы

Пример. $1000 вложено в банк под 10 % годовых. Какая сумма накопится на счете через 5 лет? 10% переводим в относительные единицы, для этого делим их на 100% и получаем 10% / 100% =0,1.

FV5= 1000 (1+ 0,1)5= 1610,5.

Правило 72-х. Иногда при расчетах приходится сталкиваться с задачей определения количества периодов начисления, по истечении которых первоначально депонированная сумма увеличивается вдвое. Очень просто решить эту задачу позволяет известное «Правило 72-х», согласно которому – количество периодов, необходимое для удвоения первоначальной суммы вычисляется по формуле:

n = 72 / r .

Данное правило позволяет получить точные результаты при значениях r: 3% < r < 18%. Срабатывает правило и в обратном порядке для определения ставки дохода, при которой депонированная сумма удвоится.

Например, при ставке 6% годовых сумма удвоится за 72 / 6 = 12 лет.

Более частое, чем один раз в год, начисление процентов. Приведенные выше расчеты основывались на том предположении, что начисление процентов происходит один раз в год. Однако аккумулирование может происходить не только раз в год, но и чаще, например раз в квартал, раз в месяц и т. д. В этом случае необходимо ставку процента разделить на частоту накопления в течение года (m), а число лет накопления (n) умножить на частоту накопления в течение года (m). Формула расчета будет выглядеть следующим образом:

FV = PV (1 + r/m)n*m,

где m – частота начисления процентов в год;

n – число лет, в течение которых происходит накопление.

Чем чаще начисляются проценты, тем больше накопленная сумма. Приведенное преобразование справедливо в отношении всех шести функций.

6.2.1.2. Будущая стоимость аннуитета (накопление единицы за период)

Данная функция показывает, какой будет стоимость серии равных

платежей величиной (А) по истечении установленного срока их наращения (n) (рисунок 6.8).

Рисунок 6.8 – Будущая стоимость аннуитета постнумерандо

Из рисунка 6.8 видно, что будущая стоимость исходного денежного потока (аннуитета) постнумерандо (FVАpst) может быть оценена как сумма наращенных поступлений.

Очевидно, что будущая стоимость последнего платежа совпадает с величиной самого платежа, т.к. отсутствует период наращения:

Будущая стоимость предпоследнего платежа будет наращена за один период и составит:

Аналогично наращиваются все платежи. Будущая стоимость первого платежа будет наращена за (n-1) периодов и составит:

FVn-1= А·(1+r) n-1.

Их общую сумму можно выразить как:

FVАpst = А·(1+r)n-1+ А·(1+r)n-2+ ...+ А·(1+r) + А

Вынесем (А) за знак скобки и обозначим (1+r) через (q). Получим выражение:

FVА = А·(qn-1+ qn-2+ ...+ q + 1).

Теперь отчетливо видно, что многочлен, содержащийся в скобках, называемый мультиплицирующий множитель и обозначаемый (FМ3(r, n)), представляет собой сумму членов геометрической прогрессии (S), но записанной в обратном порядке:

S = 1 + q + q2… + qn-2+ qn-1

Умножим обе части этого уравнения на (q) и получим:

S·q = q + q2… + qn-1+ qn

Вычтя из полученного уравнения предыдущее, получим:

S·q – S = qn–1.

S = (qn– 1) / (q – 1)

Теперь, подставив вместо (q) его значение (1+r), получаем формулу расчета мультиплицирующего множителя:

FМ3(r, n) = S = ((1+r)n– 1)/r

Следовательно, выражение для будущей стоимости обычного аннуитета величиной (А) за (n)периодов будет иметь вид:

FVАpst = А·FМ3(r, n) = А·((1+r)n– 1)/r).

Данный мультипликатор еще называют - процентный множитель будущей стоимости аннуитета FVIFA(r, n) – Future Value Interest Factor of Annuity. Экономический смысл мультиплицирующего множителя заключается в том, что он показывает, чему будет равна суммарная величина срочного (на определенный срок) накопленного аннуитета величиной в одну денежную единицу к концу срока его действия.

Поскольку значения множителя (FМ3(r, n)) зависит лишь от (r) и (n), то они рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах.

Пример. Если вкладывать ежегодно $900 на счет в банке под 10% годовых, сколько накопится на нем через 5 лет?

FVА5= 900·((1+0,1)5− 1) / 0,1) = 5494,59

Теперь рассмотрим случая авансового аннуитета (рисунок 6.9).

Как и в случае обычного, рассмотрим накопленные суммы в конце первого, второго... n -го периода:

FV1= А·(1+r) ,

FV2= А·(1+r)2,

…………………………………………….……….

FVn= А· (1+r)n

FVАpre = А·(1+r)n+А·(1+ r)n −1+...+ А·(1+r)2+ А·(1+r).

Рисунок 6.9 – Будущая стоимость авансового аннуитета (пренумерандо)

Сравнив формулы расчета FVАpst и FVАpre, легко убедиться, что

FVАpre = FVАpst (1+ r).

Произведя соответствующее умножение, получим:

FVАpre = FVАpst·(1+ r) = А· ((1+r)n– 1)/r) (1+ r) =

А· ((1+r)n+1– 1 – r)/r) = А· ((1+r)n+1– 1)/r) – 1).

Периодические депозиты могут вноситься чаще, чем один раз в год, соответственно чаще накапливается процент. При этом количество начислений увеличится в m раз и составит (n·m), а ставка уменьшится в m раз и составит (n/m). Тогда ранее полученная формула примет вид:

FVАn= А·(((1+r/m)(n+1)m– 1)/r/m) – 1).

Чем чаще делаются взносы, тем больше накопленная сумма.

Пример. Если вкладывать ежемесячно $75 на счет в банке под 10 % годовых, сколько накопится на нем через 5 лет?

FVА5= 75 (((1+0,1/12) 5·12– 1) / 0,1/12 = 5807,78.

Фактор фонда возмещения

Данная функция позволяет рассчитать величину периодического платежа (А или SFF, как его в таком случае называют), необходимого для накопления нужной суммы (FVА) по истечении (n)платежных периодов при заданной ставке процента (r) (рисунок 6.10).

Рисунок 6.10 – Периодический взнос в фонд накопления

Из формулы будущей стоимости аннуитета (FVА = А·FМ3(r, n)) следует, что величина каждого платежа (SFF или А) в случае обычного аннуитета вычисляется следующим образом:

SFFpst = Аpst = FVА / FМ3(r, n) = FVА·r/((1 + r)n− 1) = FVА·FМ5(r, n) .

где FМ5(r, n) = r/((1 + r)n− 1) – мультиплицирующий множитель, значения которого рассчитаны для разных значений (r) и (n) и представлены в соответствующих финансовых таблицах.

Экономический смысл множителя FМ5(r, n) состоит в том, что он показывает величину периодических платежей необходимых для накопления одной денежной единицы через (n) периодов.

Пример. Необходимо за 4 года скопить $1000 при ставке банка 10%. Сколько придется вкладывать каждый год?

SFF = 1000 (0,1 / ((1 + 0,1)4− 1) = 215,47.

В случае авансового фонда возмещения (соответствующего авансовому аннуитету) формула единичного платежа (SFFpre) имеет вид:

SFFpre = FVА·r/((1 + r)(n+1)− 1− r).

Функции дисконтирования

6 ФУНКЦИЙ ДЕНЕЖНОЙ ЕДИНИЦЫ. ФОРМУЛЫ СЛОЖНЫХ ПРОЦЕНТОВ

Теория изменения стоимости денег исходит из предположения, что деньги , являясь специфическим товаром, со временем меняют свою стоимость и, как правило, обесцениваются. Изменение стоимости денег происходит под влиянием ряда факторов, важнейшими из которых можно назвать инфляцию и способность денег приносить доход при условии их разумного инвестирования в альтернативные проекты. Основными операциями, позволяющими сопоставить разновременные деньги, являются операции накопления (наращивания) и дисконтирования.

ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Накопление – это процесс приведения текущей стоимости денег к их будущей стоимости, при условии, что вложенная сумма удерживается на счету в течение определенного времени, принося периодически накапливаемый процент.

Дисконтирование – это процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

Аннуитетные платежи (PMT) – это серия равновеликих платежей (поступлений), отстоящих друг от друга на один и тот же промежуток времени. Выделяют Если платежи осуществляются в конце каждого периода, то аннуитет обычный, если в начале – авансовый.

Текущая стоимость (PV) (англ. Present value) - исходная сумма долга или оценка современной величины денежной суммы, поступление которой ожидается в будущем, в пересчете на более ранний момент времени.

Будущая стоимость (FV) (англ. Future value) - сумма долга с начисленными процентами в конце срока.

Ставка дохода или процентная ставка (i) (англ. Rate of interest) - является относительным показателем эффективности вложений (норма доходности), характеризующим темп прироста стоимости за период.

Срок погашения долга (n ) (англ. Number of periods) - интервал времени, по истечении которого сумму долга и проценты нужно вернуть. Срок измеряется числом расчетных периодов, обычно равных по длине (например, месяц, квартал, год), в конце которых регулярно начисляются проценты.

Частота накоплений в год (k) - периодичность начисления процентов оказывает влияние на величину накопления. Чем чаще начисляются проценты, тем больше накопленная сумма.

ОБОЗНАЧЕНИЯ К ФОРМУЛАМ

FV – будущая стоимость денежной единицы;

PV – текущая стоимость денежной единицы;

PMT – равновеликие периодические платежи;

i – ставка дохода или процентная ставка;

n – число периодов накопления, в годах;

k – частота накоплений в год.

6 ФУНКЦИЙ ДЕНЕЖНОЙ ЕДИНИЦЫ

Формула сложных процентов - 1 функция

Будущая стоимость денежной единицы (FV) – накопленная сумма денежной единицы. Накопленная сумма денежной единицы показывает, какую сумму будет составлять денежная единица, вложенная сегодня, через определенный период времени при определенной ставке дисконта (доходности).

Начисление процентов 1 раз в год: FV = PV * [(1+ i ) n ] или FV = PV *

Начисление процентов чаще, чем один раз в год: FV = PV * [(1+ i / k ) nk ]

Формула сложных процентов - 2 функция

Текущая стоимость денежной единицы (P V) или текущая стоимость реверсии (перепродажи) показывает, какую сумму нужно иметь сегодня, чтобы через определенный период времени при определенной ставке дисконта (доходности) получить сумму, равную денежной единице, то есть какой сумме сегодня эквивалентна денежная единица, которую мы рассчитываем получить в будущем через определенный период времени.

Начисление процентов 1 раз в год: PV = FV * или PV = FV *

Начисление процентов чаще, чем один раз в год: PV = FV *

Формула сложных процентов - 3 функция

Текущая стоимость аннуитета показывает, какой сумме денежных средств сегодня эквивалентна серия равномерных платежей в будущем, равных одной денежной единице, за определенное количество периодов при определенной ставке дисконта.

Выделяют обычный и авансовый аннуитеты. Если платежи осуществляются в конце каждого периода, то аннуитет обычный, если в начале – авансовый.

Обычный аннуитет:

Начисление процентов 1 раз в год:

Начисление процентов чаще, чем один раз в год:

Авансовый аннуитет:

Формула сложных процентов - 4 функция

Теория стоимости денег во времени

По теории стоимости денег во времени одна денежная единица сегодня стоит дороже, чем полученная в будущем.

Весь период до появления будущих доходов денежная единица приносит прибыль или новую стоимость. Сумма денег приписываемая к определенному моменту времени называется денежными потоками. Основной операцией позволяющей сопоставить разновременные деньги являются операции накопления и дисконтирования.

Накопление – это процесс определения будущей стоимости.

Дисконтирование – это процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

На этих двух операциях строится весь финансовый анализ, так как денежная единица рассматривается как капитал.

Задачи накопления наиболее наглядно показаны примерами из области кредитных отношений, при этом используется формула начисления сложного процента.

Одним из основных критериев является процентная ставка (i ) – это отношение чистого дохода к вложенному капиталу. В случае операции накопления – эта ставка называется ставкой дохода на капитал. При дисконтировании называется ставкой дисконта или ставкой дисконтирования.

Суммы денег, получаемые (отдаваемые) регулярно (ежемесячно, ежеквартально, ежегодно) называются аннуитетом - они бывают простые и авансовые, в зависимости от того, в конце или в начале периода они выплачиваются.

Риск – это неопределенность, связанная с инвестициями, т. е. вероятность того, что прогнозируемые доходы от инвестиций окажутся больше или меньше предполагаемых величин.

Финансовые расчеты могут основываться на простом и сложном проценте.

Простой процент – приращение дохода на вложенную сумму денег по единой процентной ставке в течение всего срока.

Сложный процент – приращение дохода на вложенную сумму денег по сумме остатка предыдущего периода времени в течение срока инвестиций или кредита.

Расчет простого процента:

Расчет сложного процента:

FV = PV × (1+ i ) n (2)

PV – текущая стоимость, руб (у.е.);

FV – будущая стоимость, руб (у.е.);

n – период (срок) вклада, лет (мес.).

Таблица 1 - Получение простого и сложного процента

Операции

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Получен процент

Остаток на конец года

Разница в расчетах по простому и сложному проценту заключается в том, что при простом проценте ставка начисляется каждый раз на первоначально – вложенный капитал, при сложном проценте каждое последующие начисление ставки осуществляется в предшествующий период суммы, т. е. идет начисления процента на процент.

Правило 72-х :

Применяется для примерного расчета количества лет, необходимых для увеличения денежной суммы в 2 раза:

n =72 / i (3)

Выделяют шесть функций сложного процента:

    Накопленная сумма денежной единицы

    Текущая стоимость единицы (реверсии)

    Накопление денежной единицы за период

    Фонд возмещения

    Взнос на амортизацию единицы

    Текущая стоимость аннуитета (платежа)

Теперь рассмотрим каждую функцию по отдельности.

      Накопленная сумма денежной единицы

Экономический смысл – показывает, какая сумма будет накоплена на счете к концу определенного периода при заданной ставке дохода, если сегодня положить на счет одну денежную единицу.

При начислении процентов 1 раз в год:

FV = PV × (1+ i ) n (4)

При начислении процентов чаще, чем 1 раз в год:

FV = PV × (1+ i / k ) n × k (5)

i – ставка дисконта, %

n – период (срок) вклада, лет (месяц)

k – число начислений процентов в год

(1+ i ) n – фактор накопленной суммы единицы при ежегодном начислении процентов

(1+i/k) n * k – фактор накопленной суммы денежной единицы при начислении процентов чаще, чем раз в 1 год.

Задача 1: Определить какая сумма будет накоплена на счете к концу 28,5 года, если сегодня положить на счет, приносящий 26 % годовых, 4450 руб. Начисление процентов осуществляется в конце каждого полугодия.

FV = 4 450×(1+0,26/2) 28,5×2 = 4 718 796,94 руб.

      Текущая стоимость единицы

Экономический смысл – показывает, какова при заданной ставке дисконта текущая стоимость одной денежной единицы, получаемой в конце определенного периода времени.

Определяется по формулам:

(6)

(7)

1/(1+ i ) n – фактор текущей стоимости единицы при ежегодном начислении процентов;

1/(1+ i / k ) n × k – фактор текущей стоимости единицы при более частом, чем 1 раз в год начислении процентов.

Задача 2: Определить текущую стоимость 3100 руб., которые будут получены в конце 9-го года при ставке дисконта 9%. Начисление процентов каждый день.

PV= 3 100×1/(1+0,09/365) 9×365 = 1 379,20 руб

      Накопление денежной единицы за период

Экономический смысл – показывает, какая сумма будет накоплена на счете при заданной ставке, если регулярно в течение определенного срока откладывать на счет одну денежную единицу.

Будущая стоимость обычного аннуитета:

(8)

(9)

Будущая стоимость авансового аннуитета:

(10)

(11)

PMT – равновеликие периодические платежи, руб;

((1+ i ) n - 1) / i – фактор накопления денежной единицы за период

Задача 3: Определить сумму, которая будет накоплена на счете, приносящем 34 % годовых к концу 49 месяца, если ежемесячно откладывать на счет 6300 руб. платежи осуществляются: а) в начале месяца; б) в конце месяца.

а)

б)

      Формирование фонда возмещения

Экономический смысл – показывает, сколько нужно откладывать на счет регулярно в течение определенного времени, чтобы при заданной ставке дохода иметь на счете к концу этого срока одну денежную единицу.

Определяется по формулам:

(12)

(13)

i / (1+ i ) n -1 – фактор фонда возмещения.

Задача 4: Определить, какими должны быть платежи, чтобы к концу 9-го года иметь на счете, приносящем 8% годовых, 78 000 руб. платежи осуществляются: а) в конце каждого полугодия; б) в конце каждого квартала.

а)

б)

      Взнос на амортизацию

Экономический смысл – показывает, какими должны быть аннуитетные платежи в счет погашения кредита в одну денежную единицу, выданного при заданной процентной ставке на определенный срок.

Определяется по формулам:

(14)

(15)

–фактор взноса на амортизацию;

Задача 5: Кредит в размере 345 000 рублей выдан на 29 лет под 18% годовых. Определить размер аннуитетных платежей. Погашение кредита осуществляется в конце каждого месяца.

      Текущая стоимость аннуитета

Экономический смысл – показывает, какова при заданной ставке дисконта текущая стоимость серии платежей в одну денежную единицу, поступающих в течение определенного срока.

Определяется по формулам:

1. Обычный аннуитет:

(16)

(17)

2. Авансовый аннуитет:

(18)

(19)

PV - настоящий платеж, руб;

PMT - регулярный периодический платеж, руб;

i – ставка дисконта, %;

k - количество начислений в год (период);

n – период (срок) вклада, лет (месяц);

–фактор текущей стоимости обычного аннуитета;

–фактор текущей стоимости авансового аннуитета

Задача 6: Договор аренды квартиры составлен на 24 месяца. Определить текущую стоимость арендных платежей при 8% ставке дисконтирования. Арендная плата 2550 руб / мес. При условиях:

а) Арендная плата выплачивается в начале квартала;

б) Арендная плата выплачивается в конце каждого квартала.

Решение:

а)

б)

Суть оценки стоимости - приносящего прибыль предприятия состоит в том, что определяется текущая стоимость прибыли, которая будет получена в прогнозируемом периоде. Сум, полученный завтра, стоит меньше, чем сум, полученный сегодня. Это обусловлено тем, что, во-первых, деньги со временем приносят доход; а во-вторых, - инфляционные процессы обесценивают сум. Для определения текущей стоимости завтрашнего сума необходимо провести соответствующие расчеты.

Ниже рассматриваются шесть функций денег, связанные с использованием сложных процентов, о которых эксперт-оценщик должен знать и постоянно использовать в практике оценки.

Вкратце охарактеризуем основные понятия, встречающиеся в данной главе.

Денежные суммы. При оценке стоимости предприятия, приносящего чистый доход, важно определить денежные сум­мы, которые будут инвестированы в него и получены от этих инвестиций в процессе функционирования предприятия. Опре­деление размеров этих денежных сумм позволяет сделать за­ключение в том, обеспечат ли данные инвестиции положительнук) ставку дохода, при которой поступление денежных средств превысит их отток на покрытие будущих затрат.

Время. Самое дорогое в этом мире - это время - его нельзя вернуть. Вложенный в дело капитал со временем приносит процент, который, в свою очередь, используется для получения еще большего процента. Время измеряется периодами или интервалами, которые составляют день, месяц, квартал, год и т.д.

Риск. Под инвестиционным риском понимается неопределенность в получении чистых доходов от вложенных инвести­ций.

Ставка дохода. Ставка чистого дохода от инвестиций - это процентное отношение чистого дохода к вложенному капиталу. Ставка дохода предполагает оценку сумм ожидаемого чистого дохода и времени их получения. Ставка дохода на инвестиции часто называется ставкой конечной отдачи. Из различных вари­антов инвестиционных проектов выбирается тот, по которому ставка дохода наиболее высока (если эксперты руководствуют­ся экономическими критериями). Если ставки дохода двух про­ектов одинаковы, выбирается проект с меньшим риском. Для выбора варианта инвестирования производится сопоставление ставок дохода и рисков, соответствующих этим вариантам. Лишь после анализа этих сопоставлений можно сделать вывод о выборе варианта инвестирования.

Чистый доход. Чистый доход определяется как сумма чис­той прибыли, полученной после уплаты налогов и других обя­зательных платежей и амортизационных отчислений.

Аннуитет (обычный) - серия равновеликих платежей, пер­вый из которых осуществляется через один период, начиная с настоящего момента, то есть платеж производится в конце рассматриваемых периодов.

Сложный процент. Сложный (кумулятивный) процент озна­чает, что полученный процент, положенный на депозит вме­сте с первоначальными инвестициями, становится частью основной суммы. Вследующий период времени он наряду с пер­воначальным депозитом уже сам приносит процент. Простой процент не предполагает получения дохода с процента. Специальные таблицы шести функций денежной единицы (прило­жение 1) помогают экспертам-оценщикам вести расчеты с ис­пользованием сложных процентов. Таблицы состоят из шести колонок, в которых помещены значения, полученные исходя из шести функций денежной единицы.

Первая функция - накопление суммы денежной единицы. Вторая функция - накопление денежной единицы за период. Третья функция - фактор фонда возмещения. Четвертая функция - текущая стоимость денежной единицы Пятая функция - текущая стоимость аннуитета. Шестая функция - внос на амортизацию денежной единицы. Далее рассматриваются порядок расчетов и использование шести функций денежной единицы.

5.1. Первая функция сложного процента

(будущая стоимость денежной единицы - колонка 1)

При расчете ставки дохода на инвестиции, как основного критерия при выборе инвестиционного проекта, используется эффект сложного процента, то есть расчета и учета на вложенный процент.

Денежные средства в примерах, приведенных в настоящем учебном пособии, измеряются в основном в долларах. Это позволяет не учитывать инфляционные процессы в экономике и упростить проводимые расчеты.

Предполагается, что 100 долларов депонированы на специальном счете и приносят ежегодный доход, который накапли­вается. В первый год 100 долл.принесут 10 долл.в виде процента (10% от 100 долл.= 10 долл.). В конце года остаток на специальном счете составит (ПО долл. ЦОО долл. + 10 долл. =110долл.). Если далее вся сумма в 110 долл. будет в течении второго года находится на депозите, то к концу второго года процент на нее составит уже 11 долл. (10% от НО долл. = 11долл.). Если весь остаток будет оставаться на депозите, то к концу пятого года остаток составит уже 161,05 долл. При про­стом проценте в 10% ежегодный доход составит 10 долл. Через пять лет, накопленная сумма составит 150 долл. (100 долл. + 5- 10 долл.= 150 долл.). Разница от разных форм депозита со­ставила 11,05 долл.

В связи с тем, что функции сложного процента часто ис­пользуются в расчетах денежных потоков и в оценке стоимости предприятий, необходимо познакомиться со специальными таблицами шести функций денежной единицы, содержащими предварительно рассчитанные элементы (отдельные множите­ли) сложного процента. Расчет сложного процента в специальной таблице осуществляется по следующей формуле:

Где: S t - депозитная сумма после периодов, если вложен 1 долл.;

1 - один доллар; i - периодическая ставка процента; t - число периодов.

Если инвестор знает из таблицы, сколько будет стоить один доллар через 10 лет при ежегодном накоплении в 10%, то он будет знать, сколько к концу 10 лет будет стоить и инвестированная им сумма, например в 5000 долл.Для этого стоимость 1 долл. к концу 10-летнего периода, взятая в специаль­ной таблице сложного процента (колонка 1), умножается на 5000 долл.(2,594- 5000 = 12 970 долл.).

Накопление денежных средств может происходить более часто, чем год: ежедневно, ежемесячно, ежеквартально или каждое полугодие. При более частом накоплении денежных средств эффективная ставка процента снижается. Расчет произ­водится по основной формуле с определенной ее корректировкой, число лет (i ), на протяжении которых происходит накопление, умножается на частоту накопления в тече­нии года (если накопление осуществляется раз в квартал, то на 4, если раз в месяц, то на 12), а номинальная годовая ставка процента делится на частоту накопления»

5.2. Вторая функция сложного процента

(текущая стоимость денежной единицы - колонка 4)

Текущая стоимость денежной единицы (стоимость реверсии, V) - это величина, обратная накопленной сумме единицы:

Текущая стоимость денежной единицы - это текущая стои­мость одного доллара, которая будет получена в будущем.

Коэффициент текущей стоимости денежной единицы исполь­зуется для оценки текущей стоимости известного (или прогнози­руемого) единовременного поступления денежных средств с учетом заданного процента (с учетом ставки дисконта).

Завтрашняя денежная единица стоит меньше, чем она сто­ит сегодня, а на сколько - зависит, во-первых, от разрыва во времени между оттоком и поступлением денежных средств, во-вторых, - от величины необходимой ставки процента (ставки дисконта).

Если ставка дисконта равна 10%, то 100 долл., которые мы получим через год, имеют текущую стоимость в 90,91 долларов. Для проверки проведём обратную процедуру. Если инвестор сегодня располагает суммой в 90,91 долл. и может получить в те­чении года 10%, то доход, полученный за счет процентов, составит 9,09 долл. В этом случае через год остаток увеличится до 100 долл.(90,91+9,09=100)

Связь проведенных расчетов с оценкой стоимости пред­приятий заключается в следующем. Допустим, инвестору не­обходимо определить, сколько нужно заплатить сегодня за оцениваемое предприятие, чтобы получить от него доход в 10% годовых, а через два года его продать, например, за 10 млн. долл. Если инвестор собирается получить 10% на вложенный капитал, то сумма, которую он может предложить за предприятие сегодня, - 8,264 млн.долл.

Частое использование в практических расчетах коэффициента текущей стоимости единицы обусловило разработку специальных таблиц, с помощью которых можно быстро найти нужный коэффициент текущей стоимости единицы (колонка-4)

В случае более частого дисконтирования, чем один год, номинальная (годовая ставка) дисконта делится на частоту интервалов, а число периодов в году умножается на число лет. Число периодов в году принимается равным либо 4, либо 12, если интервалом является соответственно квартал или месяц.

5.3. Третья функция сложного процента

(текущая стоимость денежно единичного аннуитета - колонка 5)

Данная функция денег раскрывает текущую стоимость обычного аннуитета, то есть текущей стоимости серии равновеликих платежей.

Эта ситуация может возникнуть, если собственник сдает активы предприятия в аренду и хочет получать ежегодную арендную плату в 100 тыс. долл. в течении следующих 4 лет. При 10%-ной ставке дисконта текущая стоимость первого арендного платежа в 100 тыс. долл. через год равна 90,91 тыс. долл. (100 тыс. долл.- 0,9091=90,91 тыс. долл.), второго аренд­ного платежа - 82,64 тыс. долл.(100 тыс. долл.- 0,8264=82,64 тыс.долл.), третьего арендного платежа - 75,13 тыс.долл., четвертого - 63,30 тыс. долл. Таким образом, текущая стоимость арендных платежей в 100 тыс. долл. в течение последующих 4 лет при 10%-ной ставке дисконта составляет 316,98 тыс. долл. Последняя сумма - справедливый текущий эквивалент ежегодных поступлений в 100 тыс. долл. в течение последующих 4 лет от аренды предприятия.

Для практического использования обычного аннуитета разра­ботаны специальные таблицы. Феномен обычного аннуитета на­зывается также фактором Инвуда по имени американского уче­ного Вильяма Инвуда (1771-1843), открывшего этот феномен.

Фактор Инвуда (а) рассчитывается по следующей формуле:

Текущая стоимость аннуитета (a i) может быть рассчитана как сумма текущих стоимостей 1 долл. за определенный период времени:

Для построения таблицы обычного аннуитета необходимо сложить данные текущей стоимости единицы за соответствую­щее число лет.

Если периодические платежи поступают чаще, чем один раз в год, номинальную (годовую) ставку процента необходи­мо разделить на число периодов в году. Общее число периодов равно числу лет, умноженному на число периодов в году.

Если собственник договаривается с арендатором о том, что он (арендатор) будет осуществлять равномерные авансовые платежи по следующей схеме: первый платеж немедленно после подписания контракта, а последующие, равные платежи через определенный период, то такие платежи называются авансовым аннуитетом.

При авансовом аннуитете первый платеж не дисконтирует­ся, поскольку он вносится сразу, последующие поступления же дисконтируются: второй платеж дисконтируется с использованием фактора текущей стоимости единицы для первого интервала, который можно взять из специальных таблиц слож­ного процента (колонка-5). Для превращения обычного аннуитета в авансовый необходимо к фактору обычного аннуитета, укороченного на один период, добавить единицу. При добавле­нии единицы учитывается первое поступление, которое осуществляется сразу после подписания контракта. Таким обра­зом, при сокращении денежного потока на один период во внимание принимается текущая стоимость остальных платежей.

Пример. Арендная плата за пользование имуществом предпри­ятия составляет 100 тыс. долл. и выплачивается по контракту в те­чении 4 лет в начале каждого года. Текущая стоимость авансового ануитета при ставке дисконта в 10% составляет 348,68тыс.долл,и распределяется следующим образом: текущая стоимость первого платежа - 100 тыс. долл., второго - 90,91 тыс. долл., третьего - 82,64 тыс.долл., четвёртого - 75,13 тыс.долл.

Доход от владением предприятием может быть получен: 1) в виде денежного потока от арендных платежей за арендован­ное имущество предприятия или от прибыли; 2) в виде единовременной выручки от продажи активов предприятия. Для оценки этих видов доходов используется два различных фактора сложного процента: для денежного потока используется фактор текущей стоимости аннуитета; для единовременного дохода от продажи - фактор текущей стоимости единицы.

Пример. На протяжении 25 лет в конце каждого года предприятие приносит владельцу прибыль, равную 65 тыс. долл. Владелец решил продать предприятие за 500 тыс. долл. Ставка дисконта составляет 12%. Для оценки доходов от прибыли предприятия fro специальной таблице сложного процента (ко­лонка-5) определяем текущую стоимость аннуитета. Она составляет при ставке дисконта 12% и продолжительности 25 лет - 7,8431, Умножая ежегодную прибыль в 65 тыс. долл. на теку­щую стоимость аннуитета 7,8431, определим текущую стоимость потока прибыли за 25 лет функционирования предпри­ятия. Она составит 509804 долл.

Для оценки текущей стоимости от продажи предприятия через 25 лет используем фактор текущей стоимости единицы (колонка-4). Он равен 0,0588. Умножая полученный доход от продажи предприятия (500 тыс. долл.) на фактор текущей стоимости единицы (0,0588), получим текущую стоимость до­хода от продажи предприятия (29,411 тыс. долл.). Тогда общая текущая стоимость активов предприятия оценивается в 539,215 тыс.долл. Вданном примере использованы два фактора сложно­го процента: текущая стоимость единицы и текущая стоимость обычного аннуитета.

Возможна ситуация, когда доход от продажи предприятия может быть большим или меньшим, чем 500 тыс. долл., то есть, имеет место неопределенность. Эту неопределенность можно учесть, используя для оценки дохода от продажи ставку дисконта не 12%, как для доходов от прибыли, а, например, 15%. В этом случае оценочная текущая стоимость активов пред­приятия составит:

65 тыс. долл. х 7,8431 = 509 802 долл.

500 тыс. долл. х 0,0304 = 15 200 долл.

525 002 долл.

5.4. Четвёртая функция сложного процента

(взнос на амортизацию денежной единицы - колонка-6)

Внос на амортизацию денежной единицы - это регуляр­ный периодический платеж в погашение кредита, приносяще­го процентный доход. Это величина, обратная текущей стоимости аннуитета.

Амортизация в данном случае - это погашение (возмещение, ликвидация) долга в течение определенного времени. Взнос на амортизацию кредита математически определяется как отношение одного платежа к первоначальной основной сумме кредита. Взнос на амортизацию единицы равен обязательному периодическому платежу по кредиту, включающему процент и выплату части ос­новной суммы. Это позволяет погасить кредит и проценты по нему в течение установленного срока.

Как показано выше, 1 долл., ожидаемый к получению в конце каждого года на протяжении 4 лет, имеет при 10% годо­вой ставке текущую стоимость 3,1698. Первый доллар будет стоить 0,90909 долл., второй - 0,8264 долл., третий - 0,7513 долл., четвертый - 0,6830 долл. Сумма за четыре года составит 3,1698 долл.(0,90909 + 0,8264 + 0,7513 + +0,6830 » 3,1698).Это текущая стоимость аннуитета.

Величина износа на амортизацию единицы равна обратной величине текущей стоимости аннуитета, то есть взнос на амортизацию 1 долл.составляет величину обратную 3,1698 долл. При кредите в 3,1698 долл. под 10% годовых ежегодный платеж на его погашение в течение 4 лет равен 1 долл.

Математическое отношение одного платежа к первона­чальной годовой сумме кредита, то есть взнос на амортизацию кредита, составляет

Эта величина показывает размер периодического платежа для погашения задолжности по кредиту 3,1698 долл.Таким об­разом, для того, чтобы полностью погасить долг - его первоначальную сумму и начисляемые на остаток 10% годовых за каждый доллар кредита по окончании каждого года в течение 4 лет - необходимо выплачивать 0,315477 долл.

Чем выше процентная ставка и/или короче амортизацион­ный период, тем выше должен быть обязательный периодический взнос. И, наоборот, чем ниже ставка процента и/или более продолжительный период выплаты кредита, тем ниже процент регулярного взноса.

Каждый взнос на амортизацию единицы включает процент и выплату части первоначальной основной суммы кредита. Со­отношение этих составляющих изменяется с каждым плате­жом.

Практическое использование фактора взноса на амортизацию единицы обусловило разработку специальных таблиц, которые со­держат значение этого фактора в расчете на один доллар кредита или 100 долл. и т.д. При составлении таблиц используется формула, обратная формуле текущей стоимости аннуитета:

Где: РМТ - фактор взноса за амортизацию единицы; i - пе­риодическая ставка процента; t - число периодов; а - текущая стоимость аннуитета.

Если условия выдачи кредитов предусматривают ежемесяч­ное или поквартальное погашение за должности, то номинальная ставка годового процента делится на частоту начисле­ния процента (соответственно на 12 или на 4), а для того, чтобы определить общее число периодов, число периодов в течение года умножается на общее число лет.

Как было указано выше, с течением времени сумма по выплачиваемым процентам уменьшается, так как уменьшается остаток (процент начисления на остаток), а сумма основной выплаты возрастает.

5.5. Пятая функция сложного процента

(накопление денежной единицы за период - колонка 2)

Фактор накопления единицы позволяет ответить на вопрос о том, какой по истечении всего установленного срока будет стоимость серии равных взносов, депонированных в конце ка­ждого из периодических интервалов. Если мы вкладываем в течении трех лет 1 долл., то при ставке 10% годовых доллар, де­понированный в конце первого года, будет приносить процент в течение последующих двух лет; доллар, депонированный в конце второго года, будет приносить процент в течение после­дующего одного года; доллар, депонированный в конце третьего года, не принесет процентов вовсе.

Пример. Предприниматель хочет накопить определенную сумму для покупки нового станка. Станок стоит 4,641 долл.

Он каждый год (в конце года) откладывает на депозит по одному доллару, который приносит 10%-ный годовой доход. К концу четвертого года он скапливает необходимую сумму (4,641 долл.) и покупает станок.

Расчет специальных таблиц накопления единицы за период S(ti i) осуществляется по следующей формуле:

Результаты расчётов помещаются в колонку 2 специальной таблицы сложного процента.

5.6. Шестая функция сложного процента

(фактор фонда возмещения - колонка 3)

Фактор фонда возмещения показывает сумму, которую нужно депонировать в конце каждого периода (периодический депозит), чтобы через заданное число периодов остаток на счете составил 1 долл. При этом учитывается процент, полу­чаемый по депозитам.

Пример. Для получения одного долл., через четыре года при нулевом проценте необходимо депонировать в конце каж­дого года по 25 центов. Если ставка процента составит 10%, то по окончании каждого года необходимо депонировать всего 21,5471 центов. Разница между 1 долл. и суммы четырех вкладов (4- 21,5471 = 86,1884 центов), равная 13,8116 центов (100 центов-861884 центов), представляет собой процент, полученный по вкладам.

Пример. Предположим, что предпринимателю необходимо за четыре года скопить 4,641 долл., для покупки станка. Какие суммы денег ему необходимо откладывать каждый год при 10% годовых, чтобы через четыре года купить станок стоимостью 4,641 долл.?

Ответ: ежегодный вклад должен составить 1 долл. (0,215471 4,641=1 долл.).

В специальной таблице сложного процента (см. Приложение 1) фактор фонда возмещения находится в колонке 3.

Фактор фонда возмещения показывает сумму, которую не­обходимо депонировать в каждый период, чтобы по истечении заданного числа периодов остаток достиг одного доллара. Эта величина является обратной фактору накопления единицы за период (колонка 2).

Фактор фонда возмещения равен части от взноса на амортизацию 1 долл., который в свою очередь состоит из двух слагаемых: первый - ставка процента, второй - фактор фонда возмещения или возврат инвестированной суммы.

Приложение 1

Таблицы сложных процентов-шесть функций

денежной единицы

Начисление процентов - ежегодное

Год


Будущая стоимость единицы

Накопление единицы за период

Фактор фонда возмещения

Текущая стоимость единицы

Текущая стоимость единичного аннуитета

Взнос за амортизацию единицы

1

1,06000

1,00000

1,00000

0,94340

0,94340

1,06000

2

1,12360

2,06000

0,48544

0,89000

1,83339

0,54544

3

1,19102

3,18360

0,31411

0,83962

2,67301

0,37411

4

1,26248

4,37462

0,22859

0,79209

3,46511

0,28859

5

1,33823

5,63709

0,17740

0,74726

4,21236

0,23740

6

1,41852

6,97532

0,14336

0,70496

4,91732

0,20336

7

1,50363

8,39384

0,11914

0,66506

5,58238

0,17914

8

1,59385

9,89747

0,10104

0,62741

6,20979

0,16104

9

1,68948

11,49132

0,08702

0,59190

6,80169

0,14702

10

1,79085

13,18079

0,07587

0,55839

7,36009

0,13587

11

1,89830

14,97164

0,06679

0,52679

7,88687

0,12679

12

2,01220

16,86994

0,05928

0,49697

8,38384

0,11928

13

2,13293

18,88214

0,05296

0,46884

8,85268

0,11296

14

2,26090

21,01507

0,04758

0,44230

9,29498

0,10758

15

2,39656

23,27597

0,04296

0,41727

9,71225

0,10296

16

2,54035

25,67253

0,03895

0,39365

10,10590

0,09895

»7

2,69277

28,21288

0,03544

0,37136

10,47726

0,09544

18

2,85434

30,90565

0,03236

0,35034

10,82760

0,09236

19

3,02560

33,75999

0,02962

0,33051

11,15812

0,08962

20

3,20714

36,78559

0,02718

0,31180

11,46992

0,08718

21

3,39956

39,99273

0,02500

0,29416

11,76408

0,08500

22

3,60354

43,39229

0,02305

0,27751

12,04158

0,08305

23

3,81975

46,99583

0,02128

0,26180

12,30338

0,08128

24

4,04893

50,81558

0,01968

0,24698

12,55036

0,07968

25

4,29187

54,86451

0,01823

0,23300

12,78336

0,07823

26

4,54933

59,15638

0,01690

0,21981

13,00317

0,07690

27

4,82235

63,70576

0,01570

0,20737

13,21053

0,07570

28

5,11169

68,52811

0,01459

0,19563

13,40616

0,07459

29

5,41839

73,63980

0,01358

0,18456

13,59072

0,07358

30

5,74349

79,05818

0,01265

0,17411

13,76483

0,07265

31

6,08810

84,80168

0,01179

0,16425

13,92909

0,07179

32

6,45339

90,88978

0,01100

0,15496

14,08404

0,07100

33

6,84059

97,34316

0,01027

0,14619

14,23023

0,07027

34

7,25102

104,18375

0,00960

0,13791

14,36814

0,06960

35

7,68609

111,43478

0,00897

0,13011

14,49825

0,06897

36

8,14725

119,12087

0,00839

0,12274

14,62099

0,06839

37

8,63609

127,26812

0,00786

0,11579

14,73678

0,06786

38

9,15425

135,90421

0,00736

0,10924

14,84602

0,06736

39

9,70351

145,05846

0,00689

0,10306

14,94907

0,06689

40

10,28572

154,76197

0,00646

0,09722

15,04630

0,06646

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама