THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Мировые потенциальные гидроэнергетические ресурсы оцениваются в 35х10 3 млрд. кВт · ч в год и 4000 ГВт среднегодовой мощности. Потенциальные ресурсы России составляют 2896 млрд. кВт · ч при среднегодовой мощности 330 ГВт.
Технические гидроэнергетические ресурсы всегда меньше потенциальных, так как они учитывают потери:
- напоров - гидравлические в водоводах, бьефах, на неиспользуемых участках водотоков;

Расходов - испарение из водохранилищ, фильтрацию, холостые сбросы и т.п.;

Энергии в оборудовании.

Они характеризуют техническую возможность получения энергии на современном этапе.
Технические гидроэнергетические ресурсы России составляют 1670 млрд. кВт · ч в год, в том числе по малым ГЭС - 382 млрд. кВт · ч в год. Выработка электроэнергии на действующих ГЭС России в 2002 г. составила 170,4 млрд. Экономические гидроэнергетические ресурсы - это часть технических ресурсов, которую по современным представлениям целесообразно кВт · ч, в том числе на малых ГЭС - 2,2 млрд. кВт · ч.
использовать в обозримой перспективе. Они существенно зависят от прогресса в энергетике, удаленности ГЭС от места подключения к энергосистеме, обеспеченности рассматриваемого региона другими энергетическими ресурсами, их стоимостью, качеством и т.п. Экономические гидро­- энергетические ресурсы переменны во времени и зависят от многих изменяющихся факторов. В настоящее время в мире наблюдается тенденция роста оценки экономических гидроэнергетических ресурсов.

На 2008 год крупнейшими производителями гидроэнергии (включая переработку на ГАЭС) в абсолютных значениях являются следующие страны:

«Электроэнергетика. Строители России. XX век.» М.: Мастер, 2009. С.193.

Гидроэнергия на Зем­ле оценивается величиной 35×10 3 млрд. кВт∙ч в год. Около 25% этой энергии по техническим и экономическим ус­ловиям может использоваться для практических нужд. Эта величина примерно в 2 раза превышает современ­ный уровень ежегодной выработки электроэнергии всеми электростанциями мира. В табл. 1.5 содержатся данные о гидроэнергетических ресурсах в различных странах. В большинстве развитых капиталистических стран доля гидроэлектростанций в выработке электроэнергии сни­жается, что обусловлено освоением других наиболее эко­номичных энергоресурсов и использованием гидростан­ций преимущественно в пиковых режимах.



По запасам на Россию приходится более 20% мировых ресурсов пресных вод (без учета ледников и подземных вод). Среди шести стран мира, обладающих наибольшим речным стоком (Бразилия, Россия, Канада, США, Китай, Индия) по абсолютной величине Россия занимает второе место в мире после Бразилии, по водообеспеченности на душу населения – третье (после Бразилии и Канады).

В нашей стране широкое использование гидроэнергетических ресурсов впервые было предусмотрено в 1920 г. Ленинским пла­ном электрификации России (ГОЭЛРО). По этому пла­ну намечалось строительство 10 крупных по тому време­ни гидроэлектростанций (Волховская, Днепровская, Свирская и др.) с установленной мощностью 640 МВт. К 1941 г. мощность всех гидроэлектростанций составила 1,4 ГВт. В военные годы широко развернулось строи­тельство ГЭС в Средней Азии, а в послевоенные (до 1966 г.) - в северо-западных районах (Кольский полу­остров, Карелия, Ленинградская область), в Закавказье, а также на Волге, Каме и Днепре.

В конце этого периода было начато строительство круп­нейших гидростанций в Сибири (Братской, Краснояр­ской, Усть-Илимской, Саяно-Шушенской).

В соответствии с основными направлениями разви­тия электроэнергетики нашей страны в 1986 г. выработ­ка электроэнергии на гидроэлектростанциях составила 230-235 млрд. кВт∙ч при установленной мощности гид­роэлектростанций 65 млн. кВт.

Уникальные запасы гидроэнергии сосредоточены на реках Ангаре и Енисее; на них планируется построить более 10 крупнейших ГЭС общей установленной мощностью 60 млн. кВт, среди которых предполагается сооружение Среднеенисейской и Туруханской станций с агрегатами до 1 млн. кВт. установленной мощности.

В отличие от невозобновляемой химической энергии, запасенной в органическом топливе, кинетическая энергия движущейся в реках воды возобновляема - на гидроэлектростанциях она превращается в электрическую энергию.

Человек еще в глубокой древности обратил внимание на реки как на доступный источник энергии. Для использования этой энергии люди научились строить водяные колеса, которые вращала вода; этими колесами приводились в движение мельничные постава и другие установки. Водяная мельница является ярким примером древнейшей гидроэнергетической установки, сохранившейся во многих странах до нашего времени почти в первозданном виде. До изобретения паровой машины водная энергия была основной двигательной силой на производстве. По мере совершенствования водяных колес увеличивалась мощность гидравлических установок, приводящих в движение станки и т.д. В 1-й половине XIX века была изобретена гидротурбина, открывшая новые возможности по использованию гидроэнергоресурсов. С изобретением электрической машины и способа передачи электроэнергии на значительные расстояния началось освоение водной энергии путем преобразования ее в электрическую энергию на гидроэлектростанциях (ГЭС).

Общие сведения

Гидроэнергоресурсы - это запасы энергии текущей воды речных потоков и водоемов, расположенных выше уровня моря (а также энергии морских приливов).

Существенную особенность в оценку гидроэнергоресурсов вносит то обстоятельство, что поверхностные воды - важнейшая составляющая часть экологического баланса планеты. Если все остальные виды первичных энергоресурсов используются преимущественно для выработки энергии, то гидравлические ресурсы должны оцениваться и с точки зрения возможностей осуществления промышленного и общественного водоснабжения, развития рыбного хозяйства, ирригации, судоходства и т.д.

Характерна для гидроэнергоресурсов и та особенность, что преобразование механической энергии воды в электрическую происходит на ГЭС без промежуточного производства тепла.

Энергия рек возобновляема, причем цикличность ее воспроизводства полностью зависит от речного стока, поэтому гидроэнергоресурсы неравномерно распределяются в течение года, кроме того их величина меняется из года в год. В обобщенном виде гидроэнергоресурсы характеризуются среднемноголетней величиной (как и водные ресурсы).

В естественных условиях энергия рек тратится на размыв дна и берегов русла, перенос и переработку твердого материала, выщелачивание и перенос солей. Эта эрозионная деятельность может приводить и к вредным последствиям (нарушение устойчивости берегов, наводнения и др.), и иметь полезный эффект как, например, при выносе из горной породы руды и минеральных веществ, формирование, вынос и накопление различных стройматериалов (галечник, песок). Поэтому использование гидроресурсов для выработки электроэнергии наносит ущерб формированию других важных ресурсов.

Использование гидроэнергетических ресурсов занимает значительное место в мировом балансе электроэнергии. В 70-80-х годах вес гидроэнергии находился на уровне примерно 26 % всей выработки электроэнергии мира, достигнув значительной абсолютной величины. Выработка электроэнергии ГЭС мира после 2-й Мировой войны росла большими темпами: с 200 млрд. квт-ч в 1946 г. до 860 млрд. квт-ч в 1965 г. и 975 млрд. квт-ч в 1978 г. А сейчас в мире вырабатывается 2100 млрд. квт-ч гидроэергии в год, а к 2000 г. эта величина еще вырастет. Ускоренное развитие гидроэнергетики во многих государствах мира объясняется перспективой нарастания топливно-энергетических и экологических проблем, связанных с продолжением нарастания выработки электроэнергии на традиционных (тепловых и атомных) электростанциях при слабо разработанной технологической основе использования нетрадиционных источников энергии. Основная часть мировой выработки ГЭС падает на Северную Америку, Европу, Россию и Японию, в которых производится до 80 % электроэнергии ГЭС мира.

В ряде стран с высокой степенью использования гидроэнергоресурсов наблюдается снижение удельного веса гидроэнергии в электробалансе. Так, за последние 40 лет удельный вес гидроэнергии снизился в Австрии с 80 до 70 %, во Франции с 53 до очень малой величины (за счет увеличения производства электроэнергии на АЭС), в Италии с 94 до 50 % (это объясняется тем, что наиболее пригодные к эксплуатации гидроэнергоресурсы в этих странах уже почти исчерпаны). Одно из самых больших снижений произошло в США, где выработка электроэнергии на ГЭС в 1938 г. составляла 34 %, а уже в 1965 г. - только 17 %. В то же время в энергетике Норвегии эта доля составляет 99,6 %, Швейцарии и Бразилии - 90 %, Канады - 66 %.

Гидроэнергетический потенциал и его распределение по континентам и странам

Несмотря на значительное развитие гидроэнергетики в мире в учете мировых гидроэнергоресурсов до сих пор нет полного единообразия и отсутствуют материалы, дающие сопоставимую оценку гидроэнергоресурсов мира. Кадастровые подсчеты запасов гидроэнергии различных стран и отдельных специалистов отличаются друг от друга рядом показателей: полнотой охвата речной системы отдельной страны и отдельных водотоков, методологией определения мощности; в одних странах учитываются потенциальные гидроэнергоресурсы, в других вводятся различные поправочные коэффициенты и т.д.

Попытка упорядочить учет и оценку мировых гидроэнергоресуров была сделана на Мировых энергетических конференциях (МИРЭК).

Было предложено следующее содержание понятия гидроэнергетического потенциала - совокупность валовой мощности всех отдельных участков водотока, которые используются в настоящее время или могут быть энергетически использованы. Валовая мощность водотока, характеризующая собой его теоретическую мощность, определяется по формуле:

N квт = 9,81 QH,

где Q - расход водотока, м3/с; H - падение, м.

Мощность определяется для трех характерных расходов: Q = 95 % - расход, обеспеченностью 95 % времени; Q = 50 % - обеспеченностью 50 % времени; Qср - среднеарифметический.

Существенным недостатком этих предложений было то, что они предусматривали учет гидроэнергоресурсов не по всему водотоку, а только по тем его участкам, которые представляют энергетический интерес. Отбор же этих участков не мог быть твердо регламентирован, что на практике приводило к внесению в подсчеты элементы субъективизма. В табл. 1 приводятся подсчитанные для шестой сессии МИРЭК данные по гидроэнергоресурсам отдельных стран.

Вопросу упорядочения учета гидроэнергоресурсов было уделено большое внимание в работе Комитета по электроэнергии Европейской экономической комиссии ООН, которая установила определенные рекомендации по данному вопросу. Этими рекомендациями устанавливалась следующая классификация в определении потенциала:

Теоретический валовой (брутто) потенциал гидроэнергетический потенциал (или общие гидроэнергетические ресурсы):

1. поверхностный, учитывающий энергию стекающих вод на территории целого района или отдельно взятого речного бассейна;

2. речной, учитывающий энергию водотока.

страна страна мощность брутто, млн квт при расходах
95% обесп. 50% обесп. средн. 95% обесп. 50% обесп. средн
Америка Азия
Бразилия 16,5 Индия 31,4
Венесуэла 4,4 26,8 26,5 Пакистан 6,6 13,1 9,8
Канада 44,8 75,9 Япония 9,4 17,5
США 29 63,5 98,2 Турция 10,5
Чили 9,5 22,6 26,6 Океания
Европа Австралия 1,2 2,9 3,9
Австрия 3,2 7 Африка
Греция 9,6 Кот-д"Ивуар 0,5 3,5 7,5
Испания 14,9 Габон 6 18 21,9
Италия 9,2 13,3 17,4 Гвинея 0,5 3,5 8
Норвегия 18,4 20,3 21,4 Камерун 4,8 18,3 28,7
Португалия 0,7 2,7 5,8 Конго (Браззавиль) 3 9 11,3
Финляндия 1,9 Мадагаскар 14,3 49 80
Франция 7,7 Мали 1 4,4
Германия 1,6 2,8 Сенегал 1,1 5,5
Швеция 22,5 ЦАР 3,5 10,5 13,8
Югославия 2,4 6,3 10,1 Чад 2,5 4,3

Эксплуатационный чистый (или нетто) гидроэнергетический потенциал:

1. технический (или технические гидроэнергоресурсы) - часть теоретического валового речного потенциала, которая технически может быть использована или уже используется (мировой технический потенциал оценивается приблизительно в 12300 млрд. квт-ч);

2. экономический (или экономические гидроэнергоресурсы) - часть технического потенциала, использование которой в существующих реальных условиях экономически оправдано (т.е. экономически выгодно для использования); экономические гидроэнергоресурсы в отдельных странах приведены в табл.4.

В соответствии с этим полная величина мировых потенциальных гидроэнергоресурсов речного стока приведена в табл.2.

Табл.2 Гидроэнергетические ресурсы (полный гидроэнергетический речной потенциал) отдельных континентов

континент гидроэнергоресурсы % от итога по земному шару удельная величина гидроэнергоресурсов, квт/кв.км
млн. Квт млрд. Квт-ч
Европа 240 2100 6,4 25
Азия 1340 11750 35,7 30
Африка 700 6150 18,7 23
Северная Америка 700 6150 18,7 34
Южная Америка 600 5250 16 33
Австралия 170 1500 4,5 19
Итого по земному шару 3750 32900 100 28
бывший СССР 450 3950 12 20

Приведенные расчеты в свое время внесли существенные изменения в прежние представления о распределении гидроэнергоресурсов по континентам. Особенно большие изменения были получены по Африке и Азии. Эти данные показывают, что на Азиатском континенте сосредоточено почти 36 % мировых запасов гидроэнергии, в то время как в Африке, которая считалась наиболее богатой гидроэнергоресурсами, сосредоточено около 19 %. В табл. 3 приводится сопоставление данных, характеризующих распределение гидроэнергоресурсов по континентам, полученных по разным подсчетам. Табл.3 Насыщенность гидроэнергоресурсами территории континентов, тыс. квт-ч на 1 кв. км

Для оценки потенциальных гидроэнергетических ресурсов (без учета потерь при преобразовании водной энергии в электрическую) определяется валовой гидроэнергетический потенциал. Он характеризуется среднемноголетней годовой потенциальной энергией Э по т и среднегодовой потенциальной мощностью N по т .

Годовая потенциальная энергия, исходя из 8760 ч использования в году потенциальной мощности, может определяться по формуле

Э пот = 8760 N пот .

Валовой теоретический гидроэнергетический потенциал рек мира оценивается в 39100 млрд. кВт·ч.

Технический гидроэнергетический потенциал характеризует ту часть водной энергии, которую можно использовать технически.

При определении технического гидроэнергетического потенциала учитываются все потери, связанные с производством электроэнергии, включая невозможность полного использования стока, что вызвано недостаточной емкостью водохранилищ и ограничением мощности ГЭС, в связи с ограниченным использованием верховых и низовых участков рек с малой потенциальной мощностью, потерями на испарение с поверхности водохранилищ и на фильтрацию из водохранилищ, потерями напора и мощности в проточном тракте и энергетическом оборудовании ГЭС.

Экономически эффективный гидроэнергетический потенциал определяет ту часть технического потенциала, которую в настоящее время экономически целесообразно использовать. Следует отметить условность определения экономически эффективного потенциала, так как он базируется на техникоэкономическом сравнении с альтернативными источниками электроэнергии, в качестве которых выступают тепловые электростанции, и не учитывает достаточно полно эффективность комплексного использования водных ресурсов. Кроме того, в связи с ростом стоимости органического топлива, а также увеличением стоимости строительства ТЭС с учетом ужесточения требований по охране окружающей среды и др. можно прогнозировать увеличение в перспективе экономически эффективного потенциала, который будет приближаться к техническому гидроэнергетическому потенциалу.

Таблица 2.1 Данные о гидроэнергетическом потенциале и его использовании в странах, имеющих наибольшие гидроэнергетические ресурсы


Гидроэнергетический потенциал, выработка

Технический, млрд.кВт·ч

Экономически эффективный, млрд.кВт·ч

Мощность, млн. кВт

Выработка

млрд. кВт·ч

% от экономически эффективного

Бразилия

Республика Конго

308,8 (2000 г.)

Таджикистан

Венесуэла

Глобальное потепление климата на Земле, возможность которого обосновывается многими исследованиями, может повлиять на сток рек и гидроэнергетические ресурсы. Так, по приближенной оценке среднемноголетняя выработка ГЭС в России может увеличиться до 12%.

Мировой технический гидроэнергетический потенциал (на уровне 2008 г.) оценивается в 14650 млрд. кВт·ч, а экономически эффективный – в 8770 млрд. кВт·ч. Распределение экономического эффективного потенциала и его использования по континентам на уровне 2000 г. приведено на рис. 2.2.

Несмотря на резкое повышение требований по охране окружающей среды, за 25 лет с 1975 по 2000 гг. мировой объем выработки электроэнергии на ГЭС вырос с 1165 до 2650 млрд. кВт·ч и составил около 19% мирового производства электроэнергии. При этом используется только треть экономически эффективного гидроэнергетического потенциала. Во всем мире установленная мощность ГЭС, находящихся в эксплуатации, в 2000 г. составила 670 млн.кВт, а к 2008 г. достигла 887 млн.кВт, а выработка – 3350 млрд.кВт·ч. Данные о гидроэнергетическом потенциале стран, обладающих наибольшими гидроэнергетическими ресурсами, и его использовании на уровне 2008 г. приведены в таблице 2.1.

Полный объем всех водохранилищ в мире превысил 6 тыс. км 3 (ресурсы речного стока оцениваются в 37 тыс. км 3 ). На средние и большие водохранилища объемом более 100 млн. м 3 приходится свыше 95% суммарного объема всех водохранилищ, причем подавляющее большинство этих водохранилищ имеют ГЭС.

Гидроэнергические ресурсы не беспредельны, и приходит понимание, что они такое же национальное богатство, как нефть, газ, уголь, уран, в отличие от которых являются возобновляемыми ресурсами.

Самые крупные эксплуатируемые ГЭС имеют установленную мощность: Три ущелья (Китай) – 18,2 млн. кВт, Итайпу (Бразилия – Парагвай) – 12,6 (14,0) млн.кВт, Guri (Венесуэла) – 10,3 млн.кВт, Тукуру (Бразилия) – 7,2 млн.кВт, Гренд Кули (США) – 6,5 млн.кВт, Саяно–Шушенская – 6,4 млн.кВт и Красноярская (Россия) – 6 млн.кВт, Черчилл-Фолс – 5,4 млн.кВт и Ла Гранде (Канада) – 5,3 млн.кВт.

Таблица 2.2 Данные о гидроэнергетическом потенциале стран, максимально его использующих (на уровне 2008 г.)


Гидроэнергетический потенциал, выработка, млрд. кВт·ч

Освоение гидроэнергетического потенциала

Технический

Экономически эффективный

Мощность, млн. кВт

Выработка

млрд. кВт·ч

% от экономически эффективного потенциала

Европа

Швейцария

Германия

Финляндия

Азия

Северная и Центральная Америка

Южная Америка

Венесуэла

Парагвай

Австралия и Океания

Австралия

Анализируя мировой опыт развития энергетики, следует отметить, что практически все наиболее развитые страны в первую очередь интенсивно осваивали свои гидроэнергетические ресурсы и достигли высокого уровня их использования (табл. 2.2). Так, гидроэнергетические ресурсы в США использованы на 82%, в Японии – на 90%, в Италии, во Франции, в Швейцарии – на 95–98%.

В Украине экономически эффективный гидроэнергетический потенциал использован на 60%, в России – на 21%.

В мире сохраняется тенденция к постоянному увеличению использования вечно возобновляемых гидроэнергетических ресурсов, особенно в слаборазвитых и развивающихся странах, развитие энергетики в которых идет по пути первоочередного применения именно гидроэнергетических ресурсов. При этом строительство ГЭС в основном перемещается в предгорья и горные районы, где их отрицательное влияние на окружающую среду значительно уменьшается.


«Итайпу» – одна из крупнейших ГЭС мира на реке Парана, за 20 км до г. Фос-ду-Игуасу (Foz do Iguacu) на границе Бразилии и Парагвая. По мощности уступает лишь ГЭС «Три ущелья» (Китай), однако на 2008 год была крупнейшей по выработке электроэнергии.


ГЭС «Три ущелья» – самая большая за всю историю мировой гидроэнергетики. В состав сооружений ГЭС входят: бетонная глухая плотина, здание ГЭС с 26 агрегатами, водосбросная плотина, 2 нитки шлюзов по 5 камер с напором на каждую камеру 25,4 м, судоподъемник. Полная и полезная емкость водохранилища – 39,3 и 22,1 млн. м 3 , его максимальная глубина – 175 м. Установленная мощность ГЭС 18 200 МВт.

На тепловых электростанциях для получения энергии используют природный источник энергии, и является их основным ресурсом: на атомных электростанциях основным ресурсом является ядерное топливо, для гидроэлектростанций основным ресурсом является гидроэнергетические ресурсы.

Основные ресурсы тепловых электростанций

Приведем характеристику основных типов природного топлива.

Торф - геологически молодая среди топлива ископаемое. Образовался из накоплений болотных растений в условиях повышенной влажности и недостаточной аэрации. Торф - очень гидрофильная вещество. В процессе сушки объемная усадка достигает 50% первоначального объема. Но вода в торфе не только заполняет капилляры, она частично связана с ним. Это мешает сушке и препятствует механическому удалению влаги. Содержание углерода в торфе растет с повышением степени разложения растений. Зола торфа состоит, главным образом, с Са, Fe2О3, Ад2О3 и SiO2.

Уголь бурый - смесь в разной степени преобразованных остатков высших наземных растений, водорослей и организмов планктона. Содержание минеральных примесей (зольность) бурого угля более 30%, содержание влаги около 20%. От торфа, из которого оно образовалось, отличается большей однородностью и отсутствием остатков растений, не разложились. Основные буро-угольные бассейны Украины - Львовско-Волынский и Днепровский.

Уголь каменный - по запасам тепловой энергии, содержащейся в нем (вместе с близкими ему антрацитами), занимает основное место среди горючих ископаемых. Каменный уголь является одним из членов генетического ряда твердых горючих ископаемых: торф - бурый уголь - каменный уголь - антрацит. Содержание гигроскопической влаги в каменном угле снижается с ростом его метаморфизма от 7-9% до 0,2-0,4%.

Если зольность угля более 40%, то такой уголь называют топливными сланцами. Основные составляющие золы каменного угля - оксиды кремния, Fe, Al, встречаются некоторые редкие элементы - германий, ванадий, вольфрам, титан и драгоценные металлы - Au, Ag.

Основные каменноугольные бассейны Украины - Донецкий, Западный Донбасс и Южный Донбасс.

Нефть - топливная ископаемое, смесь углеводородов с другими органическими соединениями (сернистыми, азотистыми, кислородными). Нефть - важнейший источник жидкого топлива, а также сырья для химической промышленности. Мазут - остаток после отгона из нефти бензина и керосина.

Газы природные топливные - природные смеси углеводородов различного состава. По способу добычи подразделяются на:

Собственно природные газы, добываемые из чисто газовых месторождений, практически не содержат нефти;

Попутные газы, растворенные в нефти, добываемых вместе с ней;

В газы конденсатных месторождений;

Природное топливо классифицируется:

По агрегатному состоянию (твердые, жидкие, газообразные)

По происхождению (природные и искусственные, получаемые в процессе переработки природных - кокс, моторные топлива, газ коксовый и др.)

В золе топлива содержатся минимальные количества ванадия (0,001%) и натрия (0,0005%), которые являются основными коррозионными агентами. Для сравнения различных видов топлив принята условная единица - условное топливо - 1 т.уп = 7 106 ккал - 2,93 104МДж. Очевидно, что протекание процесса горения зависит как от свойств топлив, так и от организации самого процесса горения.

Свойства топлива определяются его химическим составом, топливной массой и балластом. Химический состав топлива принято записывать символами элементов: С, Н, O, N, S (табл.2.2). Для содержания золы и влаги приняты обозначения А и W. Индексы справа сверху показывают, к которому топлива относятся данные: г. - до рабочего топлива, с - к сухому, г - к горючей массы, в - в органической массы. Топливная масса - основные топливные составляющие: углерод (теплота сгорания 34,4 МДж / кг), водород (143 МДж / кг), сера (9,3 МДж / кг).

Таблица 2.2

Характеристики твердых и жидких топлив

Сера содержится в топливе в 3-х видах: органическая (в составе сложных соединений), колчеданная (в соединениях с Fe и другими металлами) и сульфатная.

Вещества, не сгорают, вместе с влагой топлива образуют балласт топлива. Минеральные примеси, характеризующие зольность, присутствующие в виде силикатов (кремнезем, глинозем, глина), сульфидов (Fe), карбонатов (Са, Mg, Fe), сульфатов (Са, Mg), оксидов металлов, фосфатов, хлоридов и других солей щелочных металлов в различных сочетаниях, характерных для различных месторождений.

Важнейшая характеристика топлива - теплота сгорания. Высшая теплота сгорания топлива - количество теплоты, выделяющейся в процессе полного сгорания твердого, жидкого или газообразного топлива, когда вся влага топлива переходит в продукты реакции горения. Низшая теплота сгорания меньше высшей на то количество тепла, которое затрачивается на испарение воды, образующейся в процессе сгорания топлива, а также влаги, содержащейся в нем.

Основные ресурсы атомных электростанций

Энергетически выгодными являются реакции синтеза легких ядер и деления тяжелых. В реакции синтеза ядер гелия из дейтерия

2Н + 2Н = 4 Не

выделяется 17,6 МэВ на каждый акт синтеза, дает энергию в 23,6 МВт / м сгоревшего дейтерия. Содержание дейтерия в природной водные 0,015% и 4 1013т в гидросфере Земли. Запасы безграничны, но нет управляемого синтеза, является взрывное протекания реакции в термоядерной (водородной) бомбы с инициированием реакции ядерным взрывом (Т ~ 10й К). Исследования по управляемому термоядерному синтезу велись в установках "токомак".

К тяжелым делящихся ядер, относятся природные изотопы 235U 232Th и искусственные 233U 239Рu и 241Pu. Единственный природный изотоп 235U, что делится под действием нейтронов любой энергии, называется первичным ядерным топливом, другие изотопы - вторичное ядерное топливо. Деление ядер урана сопровождается выделением около 200 МэВ в результате 1 реакции или 20 МВт / ч горючего.

Первая АЭС построена и запущена в СССР в г. Обнинске мощностью 5МВт в 1954 году. Это АЭС на тепловых (медленных) нейтронах. Ее действие основано на реакции

В процессе деления образуются вторичные нейтроны, вступают в новые реакции, поддерживая протекания цепной реакции деления ядер. Обломки, образующиеся неустойчивые и делятся сами к образованию устойчивого ядра. Такие реакторы используют примерно 1,5% энергии топлива. В процессе взаимодействия ядерного топлива с быстрыми нейтронами используется до 50% энергии топлива, одновременно создается искусственное ядерное топливо. Первая АЭС на быстрых нейтронах построена в 1973 году в М.Шевченко на Мангышлаке. В таком реакторе топливо используется медленнее, чем производится новое топливо (239Ры или 233U) (такой реактор называется реактор-размножитель или бридеров):

Для работы электростанции мощностью 1000 МВт в течение 1 суток нужно 750 Т угля, 400 т нефти или 250 г 235U.

Урановая руда состоит из трех изотопов: урана-233, -235, и - 238; и только уран-235 подходит как топливо для ядерных электростанций. В процессе производства энергетического топлива сначала в состав руды входит не более 0,7% урана-235. В процессе обогащения руды концентрация этого изотопа увеличивается до 90%.

Гидроэнергетические ресурсы

Гидроэнергетические ресурсы - это запасы потенциальной энергии речных потоков и водоемов. Технически целесообразными для использования на территории Украины могут быть гидроэнергетические ресурсы Днепра - 46%; Днестра и Тисы - по 20% и на все другие реки Украины - 14%. Особенно большое значение ГЭС Днепровского каскада имеют для водоснабжения маловодных районов Центра и Юга страны. В целом из ресурсов искусственных накопителей воды на Днепре обеспечивается 35% промышленной и коммунально-бытовой потребности страны.

Гидроэнергетические ресурсы обладают массой достоинств, благодаря которым именно в них и нуждается множество предприятий. Они выступают в роли достаточно дешевого источника энергии, который обладает способностью возобновляться. Такие ресурсы используются на гидроэлектростанциях, с их помощью происходит выработка электроэнергии. Для ее получения принято использовать разные способы и методы, но именно гидроэнергетика позволяет получить весомую часть электроэнергии, производимой во всем мире. Многих привлекают эти ресурсы благодаря их низкой себестоимости, они оказывают меньшее влияние на загрязнение и состояние окружающей среды.

Гидроэлектростанции нуждаются в постоянной модернизации и в совершенствовании, им необходимы инвестиции. Появляется необходимость в использовании новых агрегатов, замене турбин, в том, чтобы появились собственные очистные сооружения.

Гидроэнергетику принято относить к одной из самых развитых областей хозяйственной деятельности, которая позволяет трансформировать водные потоки в самую настоящую электрическую энергию. Исландия является той страной, в которой данная отрасль развита больше всего. Она одерживает пальму первенства по показателям выработки гидроэнергии. В ряде других стран гидроэнергетика также занимает солидное место. Например, в Швеции и в Канаде.

Эта отрасль обладает рядом своих достоинств и недостатков. Она позволяет получать очень дешевую электроэнергию, при этом производственная деятельность не сопровождается выбросами, которые очень вредны для окружающей среды. Подразумевается использование возобновляемой электроэнергии. От момента подключения станции до того момента, как она может начать работать на полную мощность, проходит совсем не много времени. Но когда происходят технологические процессы с использованием воды, следует обязательно подумать про системы водоподготовки. Они помогают очистить воду от разных примесей.

Среди недостатков отрасли гидроэнергетики можно выделить вероятность затопления пахотных земель, что может нанести немалый ущерб сельскому хозяйству. Нежелательно создавать такие конструкции на реках, которые располагаются в горах, ведь, как известно, такие районы отличаются сейсмичностью. Редко встречаются ГЭС на территории Африки и Южной Америки – там их развитие только начинается.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама