THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Пусть измеряемая имеет известное значение величина X . Естественно, отдельные, найденные в процессе измерения значения этой величины x 1 , x 2 ,… xn заведомо не вполне точны, т.е. не совпадают с X . Тогда величина
будет являться абсолютной погрешностью i -го измерения. Но поскольку истинное значение результата X , как правило, не известно, то реальную оценку абсолютной погрешности используя вместо X среднее арифметическое
,
которое рассчитывают по формуле:




Однако при малых объемах выборки вместо
предпочтительнее пользоваться медианой . Медианой (Ме) называют такое значение случайной величины х, при котором половина результатов имеет значение меньшее, а другая ­большее, чем Ме . Для вычисления Ме результаты располагают в порядке возрастания, то есть образуют так называемый вариационный ряд. Для нечетного количества измерений n мeдиана равна значению среднего члена ряда. Например,
для n=3

Для четных n, значение Ме равно полусумме значений двух средних результатов. Например,
для n=4

Для расчета s пользуются неокругленными результатами анализа с неточным последним десятичным знаком.
При очень большом числе выборки (n >
) случайные погрешности могут быть описаны при помощи нормального закона распределения Гаусса. При малых n распределение может отличаться от нормального. В математической статистике эта дополнительная ненадежность устраняется модифицированным симметричным t -распределением. Существует некоторый коэффициент t , называемый коэффициентом Стьюдента, который в зависимости от числа степеней свободы (f ) и доверительной вероятности (Р ) позволяет перейти от выборки к генеральной совокупности.
Стандартное отклонение среднего результата
определяется по формуле:

Величина

является доверительным интервалом среднего значения
. Для серийных анализов обычно полагают Р = 0,95.

Таблица 1. значения коэффициента Стьюдента (t )


f

Пример 1. Из десяти определений содержания марганца в пробе требуется подсчитать стандартное отклонение единичного анализа и доверительный интервал среднего значения Mn %: 0,69; 0,68; 0,70; 0,67; 0,67; 0,69; 0,66; 0,68; 0,67; 0,68.
Решение. По формуле (1) подсчитывают среднее значение анализа

По табл. 1 (приложение) находят для f=n-1=9 коэффициент Стьюдента (Р=0,95) t =2,26 и рассчитывают доверительный интервал среднего значения. Таким образом, среднее значение анализа определяется интервалом (0,679 ± 0,009) % Мn.

Пример 2. Среднее из девяти измерений давления паров воды над раствором карбамида при 20°С равно 2,02 кПа. Выборочное стандартное отклонение измерений s = 0,04 кПа. Определить ширину доверительного интервала для среднего из девяти и единичного измерения, отвечающего 95 % - й доверительной вероятности.
Решение. КоэффициентСтьюдента t для доверительной вероятности 0,95 и f = 8 равен 2,31. Учитывая, что

и
, найдем:

- ширина доверит. интервала для среднего значения

- ширина доверит. интервала для единичного измерения значения

Если же имеются результаты анализа образцов с различным содержанием, то из частных средних s путем усреднения можно вычислить общее среднее значение s . Имея m проб и для каждой пробы проводя nj параллельных определений, результаты представляют в виде таблицы:

Номер
образца

Номер анализа

Средняя погрешность рассчитывают из уравнения:



со степенями свободыf = n m , где n – общее число определений, n = m . n j .

Пример 2. Вычислить среднюю ошибку определения марганца в пяти пробах стали с различным содержанием его. Значения анализа, % Mn:
1. 0,31; 0,30; 0,29; 0,32.
2. 0,51; 0,57; 0,58; 0,57.
3. 0,71; 0,69; 0,71; 0,71.
4. 0,92; 0,92; 0,95; 0,95.
5. 1,18; 1,17; 1,21; 1,19.
Решение. По формуле (1) находят средние значения в каждой пробе, затем для каждой пробы рассчитывают квадраты разностей, по формуле (5) - погрешность.
1)
= (0,31 + 0,30 + 0,29 + 0,32)/4 = 0,305.
2)
= (0,51 + 0,57 + 0,58 + 0,57)/4 = 0,578.
3)
= (0,71+ 0,69 + 0,71 + 0,71)/4 = 0,705.
4)
= (0,92+0,92+0,95+0,95)/4 =0,935.
5)
= (1,18 + 1,17 + 1, 21 + 1,19)/4 = 1,19.

Значения квадратов разностей
1) 0,0052 +0,0052 +0,0152 +0,0152 =0,500.10 -3 .
2) 0,0122 +0,0082 +0,0022 +0,0082 =0,276.10 -3 .
3) 0,0052 + 0,0152 + 0,0052 + 0,0052 = 0,300.10 -3 .
4) 0,0152+ 0,0152 + 0,0152 + 0,0152 = 0,900.10 -3 .
5) 0,012 +0,022 +0,022 + 02 = 0,900.10 -3 .
Средняя погрешность для f = 4,5 – 5 = 15



s = 0,014 % (абс. при f =15 степеням свободы).

Когда проводят по два параллельных определения для каждого образца и находят значения х" и х" , для образцов уравнение преобразуется в выражение.

Измерения называются прямыми, если значения величин определяются приборами непосредственно (например, измерение длины линейкой, определение времени секундомером и т. д.). Измерения называютсякосвенными , если значение измеряемой величины определяется посредством прямых измерений других величин, которые связаны с измеряемой определенной зависимостью.

Случайные погрешности при прямых измерениях

Абсолютная и относительная погрешность. Пусть проведеноN измерений одной и той же величиныx в отсутствии систематической погрешности. Отдельные результаты измерений имеют вид:x 1 ,x 2 , …,x N . В качестве наилучшего выбирается среднее значение измеренной величины:

Абсолютной погрешностью единичного измерения называется разность вида:

.

Среднее значение абсолютной погрешности N единичных измерений:

(2)

называется средней абсолютной погрешностью .

Относительной погрешностью называется отношение средней абсолютной погрешности к среднему значению измеряемой величины:

. (3)

Приборные погрешности при прямых измерениях

    Если нет особых указаний, погрешность прибора равна половине его цены деления (линейка, мензурка).

    Погрешность приборов, снабженных нониусом, равна цене деления нониуса (микрометр – 0,01 мм, штангенциркуль – 0,1 мм).

    Погрешность табличных величин равна половине единицы последнего разряда (пять единиц следующего порядка за последней значащей цифрой).

    Погрешность электроизмерительных приборов вычисляется согласно классу точности С , указанному на шкале прибора:

Например:
и
,

где U max и I max – предел измерения прибора.

    Погрешность приборов с цифровой индикацией равна единице последнего разряда индикации.

После оценки случайной и приборной погрешностей в расчет принимается та, значение которой больше.

Вычисление погрешностей при косвенных измерениях

Большинство измерений являются косвенными. В этом случае искомая величина Х является функцией нескольких переменных а, b , c , значения которых можно найти прямыми измерениями: Х = f(a , b , c …).

Среднее арифметическое результата косвенных измерений будет равно:

X = f(a ,b ,c …).

Одним из способов вычисления погрешности является способ дифференцирования натурального логарифма функции Х = f(a , b , c …). Если, например, искомая величина Х определяется соотношением Х = , то после логарифмирования получаем:lnX = lna + lnb + ln(c + d ).

Дифференциал этого выражения имеет вид:

.

Применительно к вычислению приближенных значений его можно записать для относительной погрешности в виде:

 =
. (4)

Абсолютная погрешность при этом рассчитывается по формуле:

Х = Х(5)

Таким образом, расчет погрешностей и вычисление результата при косвенных измерениях производят в следующем порядке:

1) Проводят измерения всех величин, входящих в исходную формулу для вычисления конечного результата.

2) Вычисляют средние арифметические значения каждой измеряемой величины и их абсолютные погрешности.

3) Подставляют в исходную формулу средние значения всех измеренных величин и вычисляют среднее значение искомой величины:

X = f(a ,b ,c …).

4) Логарифмируют исходную формулу Х = f(a , b , c …) и записывают выражение для относительной погрешности в виде формулы (4).

5) Рассчитывают относительную погрешность  = .

6) Рассчитывают абсолютную погрешность результата по формуле (5).

7) Окончательный результат записывают в виде:

Х = Х ср Х

Абсолютные и относительные погрешности простейших функций приведены в таблице:

Абсолютная

погрешность

Относительная

погрешность

a+ b

a+ b

Абсолютная и относительная погрешность числа.

В качестве характеристик точности приближенных величин любого происхождения вводятся понятия абсолютной и относительной погрешности этих величин.

Обозначим через а приближение к точному числу А.

Определени . Величина называется погрешностью приближенного числаа.

Определение . Абсолютной погрешностью приближенного числа а называется величина
.

Практически точное число А обычно неизвестно, но мы всегда можем указать границы, в которых изменяется абсолютная погрешность.

Определение . Предельной абсолютной погрешностью приближенного числа а называется наименьшая из верхних границ для величины , которую можно найти при данном способе получения числаа.

На практике в качестве выбирают одну из верхних границ для , достаточно близкую к наименьшей.

Поскольку
, то
. Иногда пишут:
.

Абсолютная погрешность - это разница между результатом измерения

и истинным (действительным) значением измеряемой величины.

Абсолютная погрешность и предельная абсолютная погрешность не достаточны для характеристики точности измерения или вычисления. Качественно более существенна величина относительной погрешности.

Определение . Относительной погрешностью приближенного числа а назовем величину:

Определение . Предельной относительной погрешностью приближенного числа а назовем величину

Так как
.

Таким образом, относительная погрешность определяет фактически величину абсолютной погрешности, приходящейся на единицу измеряемого или вычисляемого приближенного числа а.

Пример. Округляя точные числа А до трех значащих цифр, определить

абсолютную Dи относительную δ погрешности полученных приближенных

Дано:

Найти:

∆-абсолютная погрешность

δ –относительная погрешность

Решение:

=|-13.327-(-13.3)|=0.027

,a0

*100%=0.203%

Ответ: =0,027; δ=0.203%

2.Десятичная запись приближенного числа. Значащая цифра. Верные знаки числа(определение верных и значащих цифр, примеры; теория о связи относительной погрешности и числа верных знаков).

Верные знаки числа.

Определение . Значащей цифрой приближенного числа а называется всякая цифра, отличная от нуля, и нуль, если он расположен между значащими цифрами или является представителем сохраненного десятичного разряда.

Например, в числе 0,00507 =
имеем 3 значащие цифры, а в числе 0,005070=
значащие цифры, т.е. нуль справа, сохраняя десятичный разряд, является значащим.

Условимся впредь нули справа записывать, если только они являются значащими. Тогда, иначе говоря,

значащими являются все цифры числа а, кроме нулей слева.

В десятичной системе счисления всякое число а может быть представлено в виде конечной или бесконечной суммы (десятичной дроби):

где
,
- первая значащая цифра, m - целое число, называемое старшим десятичным разрядом числа а.

Например, 518,3 =, m=2.

Пользуясь записью , введем понятие о верных десятичных знаках (в значащих цифрах) приближенно-

го числа.

Определение . Говорят, что в приближенном числе а формы n - первых значащих цифр ,

где i= m, m-1,..., m-n+1 являются верными, если абсолютная погрешность этого числа не превышает половины единицы разряда, выражаемого n-й значащей цифрой:

В противном случае последняя цифра
называется сомнительной.

При записи приближенного числа без указания его погрешности требуют, чтобы все записанные цифры

были верными. Это требование соблюдено во всех математических таблицах.

Термин “n верных знаков” характеризует лишь степень точности приближенного числа и его не следует понимать так, что n первых значащих цифр приближенного числа а совпадает с соответствующими цифрами точного числа А. Например, у чисел А=10, а=9,997 все значащие цифры различны, но число а имеет 3 верных значащих цифры. Действительно, здесь m=0 и n=3 (находим подбором).

Результат измерений физической величины всегда отличается от истинного значения на некоторую величину, которая называется погрешностью

КЛАССИФИКАЦИЯ:

1. По способу выражения: абсолютные, приведенные и относительные

2. По источнику возникновения: методические и инструментальные.

3. По условиям и причинам возникновения: основные и дополнительные

4. По характеру изменения: систематические и случайные.

5. По зависимости от входной измеряемой величины: аддитивные и мультипликативные

6. По зависимости от инерционности: статические и динамические.

13. Абсолютная, относительная и приведенная погрешности.

Абсолютная погреш­ность - это разность между измеренным и дейст­вительным значениями измеряемой величины:

где А изм, А - измеряемое и действительное значения; ΔА - абсолютная погрешность.

Абсолютную погрешность выражают в единицах измеряемой величины. Абсолютную погрешность, взятую с обратным знаком, называют поправкой.

Относительная погрешность р равна отношению абсолютной погрешности ΔА к действительному значению измеряемой величины и выражается в про­центах:

Приведенная погрешность измерительного прибо­ра - это отношение абсолютной погрешности к но­минальному значению. Номинальное значение для прибора с односторонней шкалой равно верхнему пределу измерения, для прибора с двусторонней шкалой (с нулем посередине) - арифметической сум­ме верхних пределов измерения:

пр. ном.

14. Методическая, инструментальная, систематическая и случайная погрешности.

Погрешность метода обусловлена несовершенством применяемого метода измерения, неточностью формул и математических зависимостей, описывающий данный метод измерения, а также влиянием средства измерения на объект свойства которого изменяются.

Инструментальная погрешность (погрешность инструмента) обусловлена особенностью конструкции измерительного устройства, неточностью градуировки, шкалы, а также неправильностью установки измерительного устройства.

Инструментальная погрешность, как правило, указывается в паспорте на средство измерения и может быть оценена в числовом выражении.

Систематическая погрешность - постоянная или закономерно изменяющаяся погрешность при повторных измерениях одной и той же величины в одинаковых условиях измерения. Например, погрешность, возникающая при измерении сопротивления ампервольтметром, обусловленная разрядом батареи питания.

Случайная погрешность - погрешность измерения, характер изменения которой при повторных измерениях одной и той же величины в одинаковых условиях случайный. Например, погрешность отсчета при нескольких повторных измерениях.

Причиной случайной погрешности является одновременной действие многих случайных факторов, каждый из которых в отдельности мало влияет.

Случайная погрешность может быть оценена и частично снижена путём правильной обработки методами математической статистики, а также методами вероятности.

15. Основная и дополнительная, статическая и динамическая погрешности.

Основная погрешность - погрешность, возникающая в нормальных условиях применения средства измерения (температура, влажность, напряжение питания и др.), которые нормируются и указываются в стандартах или технических условиях.

Дополнительная погрешность обуславливается отклонением одной или нескольких влияющих величин от нормального значения. Например, изменение температуры окружающей среды, изменение влажности, колебания напряжения питающей сети. Значение дополнительной погрешности нормируется и указывается в технической документации на средства измерения.

Статическая погрешность - погрешность при измерении постоянной по времени величины. Например, погрешность измерения неизменного за время измерения напряжения постоянного тока.

Динамическая погрешность - погрешность измерения изменяющейся во времени величины. Например, погрешность измерения коммутируемого напряжения постоянного тока, обусловленная переходными процессами при коммутации, а также ограниченным быстродействием измерительного прибора.

Абсолютная и относительная погрешность

Элементы теории погрешностей

Точные и приближенные числа

Точность числа, как правило, не вызывает сомнений, когда речь идет о целых значениях данных(2 карандаша, 100 деревьев). Однако, в большинстве случаев, когда точное значение числа указать невозможно (например, при измерении предмета линейкой, снятии результатов с прибора и т.п.), мы имеем дело с приближенными данными.

Приближенным значениемназывается число, незначительно отличающееся от точного значения и заменяющее его в вычислениях. Степень отличия приближенного значения числа от его точного значения характеризуется погрешностью .

Различают следующие основные источники погрешностей:

1. Погрешности постановки задачи , возникающие в результате приближенного описания реального явления в терминах математики.

2. Погрешности метода , связанные с трудностью или невозможностью решения поставленной задачи и заменой ее подобной, такой, чтобы можно было применить известный и доступный метод решения и получить результат, близкий к искомому.

3. Неустранимые погрешности , связанные с приближенными значениями исходных данных и обусловленные выполнением вычислений над приближенными числами.

4. Погрешности округления , связанные с округлением значений исходных данных, промежуточных и конечных результатов, получаемых с применением вычислительных средств.


Абсолютная и относительная погрешность

Учет погрешностей является важным аспектом применения численных методов, поскольку погрешность конечного результата решения всей задачи является продуктом взаимодействия всех видов погрешностей. Поэтому одной из основных задач теории погрешностей является оценка точности результата на основании точности исходных данных.

Если – точное число и – его приближенное значение, то погрешностью (ошибкой) приближенного значения является степень близости его значения к его точному значению .

Простейшей количественной мерой погрешности является абсолютная погрешность, которая определяется как

(1.1.2-1)

Как видно из формулы 1.1.2-1, абсолютная погрешность имеет те же единицы измерения, что и величина . Поэтому по величине абсолютной погрешности далеко не всегда можно сделать правильное заключение о качестве приближения. Например, если , а речь идет о детали станка, то измерения являются очень грубыми, а если о размере судна, то – очень точными. В связи с этим введено понятие относительной погрешности, в котором значение абсолютной погрешности отнесено к модулю приближенного значения ().

(1.1.2-2)

Использование относительных погрешностей удобно, в частности, тем, что они не зависят от масштабов величин и единиц измерений данных. Относительная погрешность измеряется в долях или процентах. Так, например, если

, то , а если и ,

то тогда .

Чтобы численно оценить погрешность функции, требуется знать основные правила подсчета погрешности действий:

· при сложении и вычитании чисел абсолютные погрешности чисел складываются

· при умножении и делении чисел друг на друга складываются их относительные погрешности


· при возведении в степень приближенного числа его относительная погрешность умножается на показатель степени

Пример 1.1.2-1. Дана функция: . Найти абсолютную и относительную погрешности величины (погрешность результата выполнения арифметических операций), если значения известны, а 1 – точное число и его погрешность равна нулю.

Определив, таким образом, значение относительной погрешности, можно найти значение абсолютной погрешности, как , где величина вычисляется по формуле при приближенных значениях

Поскольку точное значение величины обычно неизвестно, то вычисление и по приведенным выше формулам невозможно. Поэтому на практике проводят оценку предельных погрешностей вида:

(1.1.2-3)

где и – известные величины, которые являются верхними границами абсолютной и относительной погрешностей, иначе их называют – предельная абсолютная и предельная относительная погрешности. Таким образом, точное значение лежит в пределах:

Если величина известна, то , а если известна величина , то

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама