THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама

Основные свойства вирусов

В природе вирусы существуют в двух формах: внеклеточной и внутриклеточной.

Внеклеточная форма вируса называется вирион - это инертная инфекционная частица, которая состоит из нуклеиновой кислоты и белковой оболочки – капсида . Нуклеиновая кислота в составе вириона – генетический аппарат или геном - может быть только одного типа – либо ДНК, либо РНК. Геном может быть представлен одной цепочкой (однокомпонентный или целостный геном) или их имеется несколько (фрагментированный геном). Большинство вирусов растений являются РНК-содержащими.

Капсид состоит из белковых субъединиц – капсомеров. Капсиды бывают различной формы:

1). Изометрические : сферические или полиэдрические («полиэдр» значит многогранник) с кубическим типом симметрии.

2). Анизометрические со спиральным типом симметрии – палочковидные, нитевидные. Встречаются вирусы с комбинированным типом симметрии, например, в форме головастика или бацилловидные .

Сложными называются капсиды, построенные более чем из 60 структурных единиц, содержащих по 5 или 6 капсомеров.

Размеры различных вирусов колеблются чаще всего в пределах от 20 до 300 нм, однако встречаются нитевидные вирусы большей длины – до 2000 нм.

В связи с наличием у вирусов растений белковой оболочки, в которую заключена нуклеиновая кислота, вирусы обладают антигенной активностью, или иммуногенностью то есть способны вызывать образование антител при введении их в организм животных.

ПРОЯВЛЕНИЯ ЖИЗНЕДЕЯТЕЛЬНОСТИ ВИРУСОВ

Многие вирусы способны к заражению какого-либо одного хозяина. Другие, например, вирус табачной мозаики (ВТМ), имеют широкий спектр хозяев. Некоторые вирусы растений способны размножаться в телах насекомых-переносчиков.

Внутриклеточная жизнедеятельность вирусов растений, вероятно, складывается из ряда следующих этапов:

1. Вирус проникает в клетку целиком – полностью вся НК в капсидной оболочке – через повреждения в мембране.

2. Сбрасывание капсида . При инфицировании ВТМ первые симптомы появляются на несколько часов позже, чем при инфицировании свободной РНК этого вируса. Это факт в пользу утверждения о том, что проникший в клетку вирус «раздевается» - сбрасывает капсид.

3. Размножение вирусов . Вирусная РНК чаще внедряется в ядро растительной клетки, где синтезируется комплементарная РНК-(¾)-цепь и образуется двуцепочечная РНК – репликативная форма (РФ) . Затем, вероятно, в ядрышках происходит многократная репликация вирусной РНК.

4. Биосинтез структурного белка вируса . После усиления репликации вирусной РНК в клетке возрастает количество капсидного белка. Синтез этих белков проходит на рибосомах клетки-хозяина.

5. Агрегация вирусной РНК и капсида . Появление зрелых вирусных частиц.

6. Выход вирусов из клетки у растений происходит по плазмодесмам.

3.БАКТЕРИОФАГИ

Бактериофаги – вирусы бактерий. Они состоят из головки, имеющей кубическую симметрию, и отростка или «хвоста» со спиральной симметрией. На конце отростка имеется базальная пластина с шипами и щупальцами, предназначенными для закрепления на стенке бактериальной клетки. Нуклеиновая кислота (чаще всего ДНК) находится в полиэдрической головке. Выделяют два типа жизнедеятельности бактериофагов: умеренный и вирулентный.

Жизненный цикл вирулентного бактериофага состоит из следующих этапов:

1. Абсорбция – закрепление на стенке бактерии с помощью шипов и щупалец базальной пластины.

2. Инъекция – впрыскивание фаговой ДНК внутрь бактериальной клетки. Чехол отростка сокращается, давление внутри фаговой частицы увеличивается и ДНК инъецируется в бактериальную клетку, а капсид остается за пределами клетки.

3. Встраивание в нуклеоид клетки -хозяина.

4. Многократное самокопирование фаговой ДНК.

5. Регенерация капсида.

6. Созревание (сборка) фаговых частиц может происходить спонтанно, без участия специальных факторов в результате агрегации НК и капсидных белков.

7. Лизис клетки и выход бактериофагов происходит тогда, когда концентрация фагов в клетке достигает критического уровня, например, когда накапливается

10 000 вирусных частиц на клетку .

Такой цикл еще называют литическим .

Умеренные бактериофаги в жизненном цикле проходят три первых этапа (абсорбция, инъекция, встраивание в нуклеоид), а затем реплицируются синхронно с хромосомой бактерии. Это явление называется лизогенией . Через несколько поколений под влиянием условий внешней среды (УФ, рентгеновское излучение) вирусный геном может перейти из умеренной формы в вирулентную и вызвать лизис всех инфицированных клеток. В другом случае ДНК бактериофага может выйти из состава нуклеоида и покинуть клетку, «прихватив с собой» часть ДНК хозяина. Эта генетическая информация переносится фагом в другую бактериальную клетку. Это явление называется трансдукцией.

4.ВИРОИДЫ

Вироиды – это мельчайшие из известных возбудителей болезней; они много меньше самых малых вирусных геномов и лишены белковой оболочки. Известны только вироиды растений; они состоят из однонитевой молекулы РНК, которая автономно реплицируется в зараженных клетках. Вироиды были идентифицированы как возбудители опасных болезней. Один из них стал причиной гибели миллионов кокосовых пальм на Филиппинах за последние пятьдесят лет, другой нанес урон промышленному разведению хризантем в США в начале1950-х гг.

Первый вироид – веретеновидности клубней картофеля, или PSTV был идентифицирован в 1971 году. Это самый крупный из известных вироидов; его РНК состоит из 359 нуклеотидов и имеет форму либо замкнутого кольца, либо структуру типа шпильки. Комплементарные пары оснований соединены водородными связями, образуя двунитевую РНК. Вироиды обнаружены только в ядрах инфицированных клеток. Они реплицируются подобно вирусам, т. е. синтезируют комплементарную цепь, которая функционирует как матрица. При этом вироиды используют ферментные системы клетки-хозяина.

В живых организмах встречаются и другие молекулярные патогенны, не относящиеся к вироидам. Некоторые фрагменты белков могут контролировать свое воспроизведение в клетках животных без участия нуклеиновых кислот, такие частицы называют прионами.

5. Принципы классификации вирусов

Классификация вирусов растений основывается на изучении свойств конкретных вирусных изолятов . Под изолятом вируса понимают однородную популяцию вируса, выделенную из какого-либо источника и получаемую в результате клонирования путем серии последовательных пассажей через подходящее индикаторное растение. Вирусные изоляты, не отличающиеся по свойствам, относят к одному штамму вируса. Изоляты, отличающиеся незначительно относят к одному виду. Вирусы растений, которые имеют много подобных свойств, составляют группу вирусов.

При классификации вирусов используют следующие генетически стабильные признаки: тип нуклеиновой кислоты; количество нитей и фрагментов генома; характер распределения фрагментов генома в вирионах; особенности концевой структуры молекул нуклеиновой кислоты; количество и молекулярная масса полипептидов капсида; морфологические свойства вирионов: размер, форма, тип симметрии; гидродинамические свойства (характер оседания при скоростном центрифугировании); антигенность и особенности серологических тестов с антисыворотками определенного типа; способы передачи и отношение к переносчикам; круг растений-хозяев и характер симптомов на них.

На основании сравнительного анализа свойств вирусов растений они объединены в 26 групп согласно классификации вирусов, принятой Международным комитетом по таксономии вирусов Международного Союза микробиологических обществ. Группы вирусов растений неоднородны по составу, некоторые из них представлены только одним членом. Таксономия вирусов растений в ее современном состоянии не является естественной.

Номенклатура. Названия вирусов растений, несмотря на многочисленные попытки придать им латинизированный вид, остаются в основном тривиальными, т. е. образованными при первоначальном выделении и описании вируса в основном в соответствии с растением-хозяином и внешними симптомами заболевания, например, вирус табачной мозаики, вирус желтой карликовости ячменя и т. п. Причем, закрепляется имя того хозяина, из которого впервые был выделен возбудитель в биоценозах. В качестве международных названий используются английские названия вирусов: tobacco mosaic virus , barley yellow draft virus соответственно.

6. Методы изучения вирусов

1).Электронная микроскопия. Разрешающая способность электронного микроскопа – до 1А. Изображение объекта получается в результате рассеяния потока электронов исследуемым образцом. Пучок движущихся в вакууме электронов фокусируется электрическим или магнитным полем (электронными линзами). Этим методом можно определить форму и размеры вирионов, локализацию в клетке, в растении, цитологические изменения клеток.

2).Ультрацентрифугирование. Центрифуги, которые развивают скорость более 40 000 оборотов в минуту называются ультрацентрифугами. В результате развивается добавочная сила тяжести, которая способствует осаждению мелких частиц, каковыми и являются вирусы.

3).Электрофорез. Все вирусы в составе капсида содержат ионизированные группировки, которые обусловливают их подвижность в электрическом поле. Скорость движения вирусных частиц зависит от молекулярной массы и суммарного заряда. Благодаря этому методу стало возможно разделение смеси вирусов с помощью электрофореза – перемещения в электрическом поле.

4).Иммунологические (серологические) методы. Любой вирус, будь то вирус растений, животных или бактерий, при введении кроликам или другим мелким млекопитающим ведет себя как эффективный антиген . В результате образуются специфические антитела , которые реагируют с антигенами (вирусами) и используются для их обнаружения.

Для получения диагностической антисыворотки в качестве антигена применяют очищенный вирус. Этот антиген вводят внутривенно или внутрибрюшинно кролику. Количество инъекций может быть различное (4-8) с интервалом в 1-2 дня. Через 7-11 дней после последней инъекции производят забор крови, ее отстаивают 1,5-2 часа при температуре 370С, затем центрифугируют. Сыворотку хранят в ампулах по 5-10 мл при температуре - 40С.

К основным методам обнаружения реакций антиген-антитело относятся реакции преципитации и агглютинации.

Преципитация (от лат. praecipitacio – падение вниз, осаждение) – реакция, позволяющая осадить вирусы (антигены) с помощью антител, обладает высокой чувствительностью и специфичностью.

Агглютинация (от лат. agglutinatio – склеивание) – склеивание в глыбки (комочки) микроорганизмов, в т. ч. вирусов и выпадение их в осадок. Используется для диагностики вирусных болезней.

5).Метод растений-индикаторов. Метод основан на визуальном контроле. При инфицировании растении вирусами появляются симптомы поражения, которые зависят от растения хозяина, штамма вируса и условий внешней среды. Растения-индикаторы – это такие растения, которые реагируют характерными симптомами на заражение вирусом. Для инфицирования используются молодые растения в фазе 2-3 настоящих листьев. Заражение (инокуляцию ) проводят экстрактом больных тканей. Для этого их растирают в ступке с буферным раствором, гомогенат фильтруют через марлю или капрон. Чаще всего инокуляцию проводят механическим путем: экстракт втирают пальцами, тампоном, шпателем, щеткой или кистью. Через 5-10 минут излишек вирусного материала смывают дистиллированной водой. Растения маркируют, закрепляя этикетки на инфицированных листьях. Растения помещают на сутки в темное место, затем переносят в фитотрон на 12-14 дней до четкого проявления вирусных симптомов. Производят идентификацию вирусных поражений с помощью таблиц и фотографий.

Выделяют четыре основных типа реакций растений-индикаторов на поражения их вирусом:

Иммунность – когда растения не поражаются данным вирусом;

Сверхчувствительность – когда растения поражаются с образованием локальных некрозов, которые возникают вследствие отмирания клеток возле точки заражения;

Толерантность – когда вирус транспортируется по тканям растения, но симптомы заболевания выражены слабо;

Системное поражение – когда вирус транспортируется по всем тканям растений с четким проявлением симптомов заболевания.

7. Типы вирусных симптомов

Растения, на которых легко выявляются симптомы, характерные для заражения данным вирусом, называются индикаторными растениями. Кроме внешних симптомов вирусная инфекция вызывает различного рода гистологические и цитологические изменения в больном растении. Они проявляются в аномалиях сосудистой системы и различного рода изменениях структуры клеток – от изменений структуры отдельных органелл до образования в клетке специфических вирусных включений. Включения могут быть образованы вирусными частицами, которые локализуются в клетке характерным для данного вируса образом либо сочетанием их с продуктами вирусного влияния. Тип внутриклеточного включения является характерным для данного вируса и используется для идентификации вирусов.

Выделяют следующие основные типы вирусных симптомов :

1).Мозаика – неравномерная зеленая окраска листовой пластинки или наличия пятен желтоватого или светло-зеленого цвета.

2).Хлороз – общее или симметричное пожелтение тканей листа.

3).Некроз – отмирание тканей растений, часто является следствием мозаики или хлороза при сильном их развитии, но нередко развивается и самостоятельно. Выделяют местный некроз – развивается в местах проникновения инфекции в растение и системный (рассеянный) некроз – может проявляться на любых частях растения.

4).Деформации органов растений разнообразны и могут быть вызваны физиологическими нарушениями, которые приводят к изменению морфологии органов или всего растения. В результате нарушения координаций роста развивается морщинистость, курчавость, вздутия, искривления побегов.

5).Угнетение роста может выражаться в общей карликовости растений, укорочении междоузлий на верхушке побега.

6).Увядание наблюдается при сильном поражении сосудистой системы.

7).Израстание (пролиферация) . Непосредственными причинами израстания может быть нарушение покоя пазушных и зимующих почек или перерождение и вегетативный рост генеративных органов. Сопутствующим признаком израстания является нитевидность стеблей и ростков .

8).Абортивность – опадение цветков и завязей, усыхание завязавшихся плодов или отдельных семян в плоде, бессемянность плодов.

9).Новообразования – опухоли на различных частях растения (например, разрастание жилок листа), листовидные выросты энации и др.

10).Антоцианоз – пурпурное, красно-фиолетовое или сине-фиолетовое окрашивание листьев или их краев, жилок, стеблей.

11).Пестролепестность – неравномерность окраски или частичное обесцвечивание лепестков, например, у тюльпана.

В большинстве случаев у больного растения обнаруживается несколько симптомов в сочетании.

8.Заражение и перемещение вирусов в растениях.

Фитопатогенные вирусы поражают широкий круг растений из различных семейств. При этом один и тот же вид растения может быть хозяином многих вирусов. Каждый вирус имеет определенный круг растений-хозяев, т. е. растений, восприимчивых к данному вирусу, в клетках которых он может размножаться, давая новые поколения вирусных частиц. Например, некоторые вирусы, поражающие землянику (род Fragaria), не вызывают заболевания у растений других родов. А для вируса бронзовости томатов характерен широкий круг хозяев: в этом списке растения 166 видов из 34 семейств, относящихся как к классу однодольных, так и к классу двудольных.

Вирусные инфекции растений существенно отличаются от вирусных инфекций животных и микроорганизмов.

Во-первых, фитопатогенные вирусы проникают в клетки растений через повреждения в клеточной оболочке при ее механическом травмировании или в результате прокалывания ротовыми органами членистоногих переносчиков.

Во-вторых, растение, инфицированное вирусом становится его постоянным носителем. При этом вирус проникает практически во все органы и ткани инфицированного растения (за исключением вирусов, имеющих тканевую специфичность ).

Поражение вирусами чаще бывает системным, реже локальным. При системном поражении вирусные частицы способны перемещаться из клетки в клетку по плазмодесмам, через межклеточную жидкость, по проводящим элементам в другие органы растений. Клетки растений при системном заражении могут накапливать вирус в значительных количествах, оставаясь жизнеспособными.

Локальное поражение может объясняться двумя причинами: тканевой специфичностью и местной некротизацией ткани, в результате чего происходит локализация вирусной инфекции в месте проникновения вируса в ткани растения.

Часто растения реагируют на инфекцию обоими типами симптомов, и локальная некротизация тканей в местах проникновения вирусов сочетается с развитием системной инфекции растения, которая также может приводить к местной или системной некротизации тканей разных органов.

Перемещение вирусов в растении происходит по плазмодесмам, через межклеточную жидкость, по флоэме и ксилеме. Скорость распространения зависит от температуры: чем выше температура, тем выше скорость. По флоэме вирусы могут распространяться со скоростью несколько сантиметров в час. Большинство вирусов передвигается с током углеводов по флоэме, реже – по ксилеме.

Вирусы накапливаются только в тех клетках, где происходит их воспроизводство. В сосудах они практически не способны размножаться. Максимальное количество вирусных частиц, накапливающихся в клетке, зависит от вида растения-хозяина. Например, в клетках листьев табака накапливается в 10 раз больше вирусов табачной мозаики, чем в листьях томата.

9. Распространение вирусов в биоценозах

Вирусы растений обладают способностью к быстрому распространению в биоценозах. Способы распространения различны:

1. Передача контактно-механическим путем при взаимоповреждающем контакте здорового и больного растения (при обрезке, пасынковании, сборе урожая, а также в загущенных посадках).

2. Распространение семенами и пыльцой.

3. Для вегетативно размножаемых культур основной способ распространения вирусов - через посадочный материал.

4. Беспозвоночными с колюще сосущим или грызущим аппаратом (тлями, цикадками, трипсами, червецами, щитовками, клещами).

5. Нематодами.

6. С помощью повилики.

7. Спорами и зооспорами фитопатогенных грибов.

Интенсивность эпифитотий зависит от различных переносчиков. В настоящее время определено около 400 различных переносчиков. Среди них большинство – насекомые. Период от начала принятия вируса от донора до появления у насекомого способности переносить вирус называют инкубационным периодом . Время, на протяжении которого переносчик с вирусом остается инфекционным, относят к определению персистентность. По особенностям передачи вирусов растений выделяют три группы: персистентные, полуперсистентные, неперсистентные.

Неперсистентные вирусы передаются переносчиками непосредственно после непродолжительного (несколько секунд) питания на больном или на здоровом растении. Переносчики быстро (за несколько минут) теряют способность к инфицированию, если они перестают питаться на больном растении. К неперсистентным относят U-вирус картофеля, вирус желтой мозаики фасоли и др.

Персистентные вирусы передаются переносчиком не сразу после приобретения их на больном растении, но после латентного периода определенной продолжительности (от нескольких часов до нескольких суток). Переносчик сохраняет способность передавать вирус в течение длительного времени, иногда в течение всей жизни. Среди них выделяют возбудители, которые не репродуцируются в переносчике (например, вирус желтой карликовости ячменя) и вирусы, способные размножаться в организме переносчика (вирус пожелтения жилок осота).

Полуперсистентные вирусы представляют собой промежуточную группу. Они способны передаваться переносчиком сразу после его питания на больном растении. После прекращения питания способность к инфицированию сохраняется в течение 3-4 суток. Латентный период отсутствует. Представителем этой группы является вирус желтухи сахарной свеклы.

Отдельные переносчики могут передавать много различных вирусов, например тля вида Myzus persicae способна переносить до 70 вирусов. Распространению вирусов способствует космополитизм насекомых. Так некоторые трипсы (Thrips tabaci) питаются на растениях 140 видов из 40 семейств.

10. СОХРАНЕНИЕ ВИРУСОВ НА ПРОТЯЖЕНИЕ ГОДОВОГО ЦИКЛА

Сохранение вирусов в течение зимнего периода может осуществляться различными способами. Для многолетников характерно сохранение в стеблях, корнях, клубнях, отводках. Некоторые вирусы зимуют в семенах. Вирусы, имеющие широкий спектр хозяев хорошо приспособлены к сохранению в природе, если среди восприимчивых растений имеются многолетники. Некоторые вирусы могут зимовать в яйцах насекомых-переносчиков. Вирус табачной мозаики может сохраняться в почве в растительных остатках. Вирус салата-латука может сохраняться в спорах почвенного гриба Olpidium. Если в одной местности выращиваются яровая и озимая пшеница, вирус полосатой мозаики с яровых растений передается на всходы падалицы, а затем – на озимые растения.

11. РОЛЬ ВИРУСОВ В ПРИРОДЕ И ЭКОНОМИЧЕСКОЕ ЗНАЧЕНИЕ Вирусных болезней

Вирусы постоянно присутствуют в растениях. Многие вирусы способны вызывать серьезные заболевания, приводящие к существенной потере урожая или к ухудшению его качества, в частности, уменьшается всхожесть семян и коэффициент репродукции, устойчивость растений к инфекциям любой этиологии и др. Болезни, вызываемые вирусами, называют вирозами . Вирусы прямо или косвенно влияют на физиологические процессы инфицированного растения, причем измененный метаболизм напоминает нормальное состояние стареющего организма. При появлении симптомов вироза у растений усиливается дыхание, это связано с разобщением дыхания и окислительного фосфорилирования.

Вирусы в природе выполняют, вероятно, роль регуляторов численности популяций живых организмов.

Часто трудно оценить потери урожая за счет поражения вирусами. Размеры их варьируют по годам и районам, так что средние значения в сущности не показательны. Но в США считают, что потери урожая пшеницы по средним многолетним данным составляют около 2%. Временами эти потери достигают 20%. Опасны вирусные болезни многолетних культур, т. к. они вызывают отмирание или ослабление растений, для возобновления которых нужно несколько лет. Например, в Западной Африке вирус деформации побегов дерева какао периодически уничтожает целые плантации. Особую опасность представляют фитопатогенные вирусы для овощных растений, размножаемых вегетативно, например, картофеля и многих декоративных растений. Зачастую больными оказываются все растения, и в то же время снижение урожая будет небольшим (около 10%). Однако, в неблагоприятных погодных условиях вирусная инфекция может достигнуть бурного развития и привести к полному вырождению растений и посадочного материала.

12. МЕТОДЫ ДИАГНОСТИКИ ВИРУСНЫХ БОЛЕЗНЕЙ

Визуальная диагностика. Возможна лишь в случае, если вирус вызывает определенные патологические изменения в организме – симптомы. Диагностика бывает затруднена в связи с бессимптомным (латентным) характером развития болезней. Кроме того, сходные симптомы могут вызвать нарушения минерального питания, поражения фитоплазмами, бактериями, гербициды гормональной природы. Таким образом, точная идентификация поражения вирусами лишь по внешним признакам невозможна.

Метод индикаторных растений основан на использовании тест-растений (индикаторных), дающих четкие симптомы.

Серологическая диагностика . Если ввести кролику очищенный препарат растительного вируса (антиген), в организме животного вырабатываются специфические антитела, связывающие антиген. В результате образуется осадок (преципитат или серум), различимый визуально или с помощью микроскопа. Практическое значение для идентификации вирусов в растении имеет модификация под названием капельный метод : на предметном стекле каплю антисыворотки смешивают с каплей сока растения. Через несколько минут оценивают реакцию под микроскопом при малом увеличении в темном поле или даже визуально без микроскопа.

Метод электронной микроскопии позволяет установить форму, строение и даже размеры вирусов.

Метод гель-электрофореза. Этот метод основан на электрофоретическом разделении предварительно очищенных нуклеиновых кислот вируса или вироида в геле при силе тока 3 и 6 мА с окрашиванием зон. При сравнении полученных окрашенных линий с высотой стандартных маркерных зон определяют массу и размеры вирусных структур.

Метод ДНК-зондов основан на принципе комплементарности нуклеиновых кислот. Синтезируют зонды , которые узнают определенные нуклеотидные последовательности РНК вируса . В зависимости от выбора зондов можно дифференцировать группы, виды и даже штаммы вирусов.

Метод включений. Развитие некоторых вирусов в клетках растения сопровождается образованием в ней скопления вирусных частиц (включений, кристаллов Ивановского), которые обнаруживаются даже с помощью светового микроскопа. Каждому виду вируса свойственна своя форма вирусных включений, образующихся обычно в клетках волосков или эпидермиса листьев. Например, для вируса табачной мозаики характерны игловидные и гексагональные кристаллы; для Х-вируса картофеля типично образование сферических аморфных тел.

13. СИСТЕМА ЗАЩИТНЫХ МЕРОПРИЯТИЙ ПРОТИВ ФИТОПАТОГЕННЫХ ВИРУСОВ

Прямые методы защиты растений от вирусов отсутствуют. Применяемая система интегрированной защиты против вирусов направлена на сокращение источников инфекции внутри и вне посевов или насаждений. Основными направлениями защиты являются:

1).Иммунизация растений слабопатогенными штаммами вируса. Вакцинные штаммы используются как в открытом, так и в закрытом грунте. Опрыскиваются сеянцы (проростки). Вакцина вызывает бессимптомный патологический процесс, который вскоре подавляется иммунными системами организма.

2).Селекция растений , направленная на усиление иммунности и толерантности. Широкое внедрение в производство гибридов, несущих гены устойчивости к определенным вирусам в значительной степени сдерживает распространение этих вирусов.

3).Устранение источников инфекции . Сюда относится выбраковка из насаждений растений с вирусными симптомами, прополка, удаление растительных остатков. Часто резерваторами вирусов являются сорные растения. Особое значение играет прочистка маточников. Этот метод эффективен для растений, имеющих хорошо различимые симптомы.

4).Использование безвирусных семян . Семенные растения нужно выращивать в достаточной изоляции от внешних резерваторов инфекции. Хранить семена желательно в фольге или любой герметичной упаковке.

5).Термотерапия позволяет резко снизить зараженность, а иногда и полностью избавить растения от вирусов. Прогревание семян или вегетативных органов строго специфичны для каждой культуры.

6).Химиотерапия – обработка химическими веществами, задерживающими репликацию вирусов или снижающими их инфекционные свойства. К таким веществам относятся аналоги азотистых оснований (пуринов или пиримидинов).

7).Использование безвирусного посадочного материала , полученного методом апикальных меристем. Лучший эффект оздоровления от вирусных инфекций получают при комбинировании метода апикальных меристем с предварительной термотерапией и химиотерапией. В среду для культивирования меристем вводят специальные антивирусные добавки (гликопротеины, полисахариды, нуклеиновые кислоты, антибиотики) либо обрабатывают ими исходные растения-доноры.

8).Государственный или внутрихозяйственный карантин. При импорте растений в сертификате должно быть подтверждение о том, что материал не содержит карантинных объектов.

9).Организационно-хозяйственные мероприятия включают дезинфекцию режущих инструментов и орудий труда в растворе формалина, перманганата калия, спирта или их тепловую обработку, работу в спецодежде и обуви, использование дезинфекционных ковриков и платформ.

10).Ослабление симптомов заболевания за счет поддержания оптимального режима выращивания культуры, т. е. активизации иммунитета . Для этого растения опрыскивают растворами микроэлементов, фосфорными и калийными удобрениями, которые стимулируют раннее созревание растений и как следствие – наступление возрастной устойчивости.

14. БИОПРЕПАРАТЫ НА ВИРУСНОЙ ОСНОВЕ

В настоящее время широко используется вакцинация (преинокуляция) растений слабопатогенными штаммами вирусов. В России получен вакцинный штамм «ВТМ - V -69 » для томатов, используемый как в открытом, так и в закрытом грунте. Опрыскиваются сеянцы (проростки). Препарат характеризуется генетической стабильностью, имеет длительный вакцинирующий эффект при полной бессимптомности. Вакцина сдерживает развитие различных пятнистостей у томатов. Прибавка урожая в вакцинированных посадках около 23%.

«ВИРОГ - 43 » - вакцинный препарат против зеленой крапчатой мозаики огурца, использование препарата приводит к развитию неспецифического индуцированного иммунитета. Вакцинируются 8-10-дневные проростки в фазе развернутых семядольных листьев. Через 10-12 дней на вакцинированных растениях проявляется слабая мозаика, которая позднее исчезает совсем. Концентрация патогенных вирусов снижается в несколько раз. Возникающий неспецифический индуцированный эффект снижает также восприимчивость к некоторым грибным заболеваниям.

ЛИТЕРАТУРА

1.Бойко А. Л. Экология вирусов растений. – К.:Вища школа,1990.-166с.

2.Гиббс А., Хариссон Б. Основы вирусологии растений.-М.:Мир, 1978. – 430с.

3.Гнутова Р. В. Серология и иммунология вирусов растений. – М.:Наука,1993. -301с.

4.Защита растений от болезней в теплицах (Справочник) /Под ред. А. К. Ахатова. Москва:Товарищество научных изданий КМК, 2002. – 464с.

6.Метьюз Р. Вирусы растений. – М.:Мир, 1973. -600с.

7.Френкель-Конрат Х. Химия и биология вирусов. – М.: Москва,1972. -336с.

Тема растительных вирусов на самом деле очень серьезна. Ранее, до приобретения зараженного кустика герани, мне не приходилось задумываться о том, что вирусы заселяют все — даже наши огороды на подоконнике. Но наши маленькие трагедии, связанные с потерей одного-двух растений коллекции — ничто, по сравнению с тысячами гектаров урожая, которые могли бы прокормить миллионы людей в самых уязвимых странах.

Моя болеющая герань





Зная природу вирусов растений и шаги предотвращения их распространения, мы сможем не только сохранить растения здоровыми, но и возможно уменьшить эту напасть в масштабах ближайших цветочных магазинов))) а это уже шаг вперед!

Самые опасные вирусы растений

Наткнулась на архив вирусологии DOI 10.1007 / s00705-014-2295-9 (2012), десяток самых экономически опасных растительных вирусов, поражающих не только «именные» растения:

  • Вирус табачной мозаики (TMV)
  • Вирус пятнистого увядания томатов (TSWV)
  • Вирус желтого листа томатов (TYLCV)
  • Вирус огуречной мозаики (только огурцы)(CMV)
  • Вирус некротических пятен(INS)
  • Вирус мозаики цветной капусты (CaMV)
  • Вирус мозаики африканской кассавы (ACMV)
  • Вирус сливяной оспы (Шарке) (PPV)
  • Вирус мозаики костра (BМV)
  • Картофельный вирус X (PVX)


























Не попали в 10-ку вирус цитрусовых, желтая карликовость ячменя, вирус скручивания листьев.

Как выглядит зараженное вирусом растение?

Определить вирусную природу болезни можно по нехарактерным пятнам и полосам на листьях и цветках — это могут быть концентрические круги, прожилки, крапчатость светлого или более темного оттенка, чем здоровый цвет растения, полное пожелтение или побеление листа, деформация цветков и листьев. Есть общепринятое деление вирусов растений на 3 вида: вирусы мозаики , вирусы желтухи и вирусы некротических пятен .

Вирусы мозаики неравномерно окрашивают листья и цветы полосами, пятнами, кольцами. заворачивают и морщинят лист. Растение медленно растет и слабо цветет, на листьях все признаки хлороза.

Желтуха препятствует фотосинтезу растений, поэтому они страдают дефицитом хлорофилла, теряют эластичность, желтеют или бледнеют. Желтуха поражает ксилему и флоэму — транспортную систему растения. Вирус желтухи стимулирует появление большого количества бутонов, из которых зачастую развиваются стерильные деформированные цветки.

Основные симптомы вируса некротических пятен : «ветрянка» листьев и цветков, увядание, задержка роста, мокнущие, ввалившиеся пятна на листьях, бледная расцветка, концентрические круги на листьях и масса других симптомов, говорящих о том, что с растением «что-то не так» — это может быть вирус, а может быть еще сотня других вероятных проблем. Симптомы вируса зависят от того, в какое время года растение было инфицировано, его возраст, физиологическое состояние, условия содержания и многие другие факторы.

Вирус некротических пятен все чаще поражает декоративные растения: африканскую фиалку, цикламен, георгины, пион, петунии, драцену, амариллисы, флоксы, астры, флоксы, мак, азалии, бегонию, примулы, фуксии, шалфей, герберы, гортензии, бальзамин, лилии, настурции и многие другие виды.

Как заболевают растения?

На сайте Американской Ассоциации Орхидеистов есть содержательная статья о вирусах орхидей, в которой прочитала такую неутешительную фразу — «Старые сорта орхидей вероятнее всего поражены вирусом, а некоторые сорта существуют только как инфицированные образцы»…

76% из известных вирусов растений передаются насекомыми — парниковыми вредителями, такими как белокрылка, тля, ТРИПСЫ, червецы, клещики. Насекомые подбирают вирус с одного растения, переносят на другое, носят вирус в своей ДНК и передают его личинкам вместе с генетическим материалом.

От трипса несложно избавиться тем же актелликом или актарой, а от вируса, оставленного им на растении, избавиться нельзя. Даже генетически модифицированные устойчивые гибриды в конце концов сдаются — вирус мутирует не менее эффективно, чем работают микробиологи. Вирус распространяется также с семенами, черенкованием, с соком растения, на садовом инструменте.

Вирус мозаики в квартирных условиях семенами и насекомыми разносится редко, в основном виноват инфицированный садовый инструмент, грязные руки (потрогали листочек на больном растении и перенесли микроволокна на другое), любые контактные предметы. На сайте Мичиганского Университета в статье о табачной мозаике есть предостережение даже для курильщиков — контакт с табачными изделиями может привести к инфицированию. Там же я узнала, что вирус табачной мозаики (инфицирующий отнюдь не только табак) выживает в мертвой ткани до 50 лет, отлично зимует.

Как поставить точный диагноз растению?

Диагностировать вирус у растения не просто — симптомы маскируются под грибковые и бактериальные инфекции, и наоборот. Вирус может не проявлять себя какое-то время, но при первом же стрессе растение из носителя превратится в больное. Микробиологи всех развитых стран работают над универсальными быстрыми тестами для определения вида вируса, но цена таких разработок пока не доступна для домашних цветоводов. А учитывая тот факт, что лечения не существует, то и узнать точный диагноз не так уж важно.

Существуют американские тест-полоски, разработанные Мичиганским Университетом, на 4 основных вируса — 4 штамма вируса табачной мозаики, вирус пятнистого увядания томатов, вирус некротической пятнистости. По $14 за 4 полоски. В основном такие вещи производятся для профи в агробизнесе и не универсальны: иммунохроматографические тест-полоски на косточковые, картофель, помидоры.В надежде найти хоть какую-то информацию о лечении вирусов растений, побывала во всех мыслимых и немыслимых местах всемирной паутины, но так и не нашла того, что искала. На данном этапе предпринимаются все усилия для создания генетически устойчивых к вирусам растений.

Как избежать заражения других растений коллекции?

Скорее всего, описанные ниже меры предосторожности покажутся вам чрезмерными, но в том случае, если растения — это ваш бизнес, не проходите мимо этих рекомендаций. Источник — Американская Ассоциация Орхидеистов и официальный паблик Мичиганского Университета.

Растения, за которыми тщательно ухаживают, регулярно обновляют грунт и удобряют, могут прожить счастливую растительную «жизнь», почти не испытывая неудобств. Нужно прилагать максимум усилий, чтобы сберечь цветы от стрессов, перепадов температур, сквозняков, солнечных ожегов или недостатка ультрафиолета. Все это довольно сложно в реальной жизни, поэтому стоит соблюдать «технику безопасности» при уходе и приобретении растения, чтобы по максимуму уберечь себя и коллекцию от растительных вирусов.

Растишь иногда цветочек, растишь, а потом вдруг замечаешь, что его листья стремительно начинают желтеть, покрываться пятнами или опадать. И пока разберёшься, что к чему, полцветка уже как и не было. Причём, что интересно, сам цветок вроде и не погиб, но от него остались стебли да единичные листочки. А во всём этом виноваты вирусы и грибки, поражающие комнатные растения.

Чем коварны вирусы и грибки? Точно так же как в организме человека, в организме растения они размножаются очень стремительно. И ещё недавно здоровый цветочек через пару дней выглядит совсем больным. Не мудрено, что и начало вирусной болезни легко пропустить. Поэтому про различные виды вирусов и грибков, поражающих комнатные растения лучше знать заранее.

Причины и следствия вирусных болезней

Прежде чем говорить о самих вирусах и грибках, предлагаю вначале разобраться в причинах их появления. Ведь любой микроб или грибок заводится только в определённых условиях. Каких?

Условия, при которых растения заражаются вирусами или грибками для каждого растения индивидуальны. Но основные причины – нарушения в уходе за цветком. То есть, если Вы тенелюбивые цветы выставляете на солнце, а требующие умеренного полива, заливаете – Вы ослабляете их иммунитет. И тут как у людей, растение с ослабленным иммунитетом легче поражается вирусами и грибками.

Откуда они берутся? Часто вирусы заносят насекомые-вредители, которые заводятся на цветах. Те же трипсы , тля, комнатные муравьи на лапках переносят различные виды инфекций.

Грунт может быть заражён вирусами, так что после покупки почвы лучше её прокалить над огнём или хотя бы полить марганцовкой. А споры различных грибков и вовсе легко переносятся через воздух.

Вирусные болезни растений

Я уже выше сказала, но повторюсь – это самые коварные болезни комнатных цветов. Их трудно выявить на начальной стадии, а лекарств против них НЕТ!

Как выглядит растение, подхватившее вирус? Впрочем, вирусных болезней цветов не очень много и их симптомы схожи. Главный симптом – изменения в структуре и расцветке листьев, а также различные пятна, штришки, полосы и зигзаги на листьях и цветах.

Мозаичная болезнь

Одним из видов вирусной болезни цветов является Мозаичная болезнь. На листьях появляются пятнышки разных размеров и формы – как мозаика. А ещё вперемешку с пятнами можно увидеть разноцветные дуги, чёрточки, полосочки, извилистые линии, кольца. В этих местах цвет листа изменён. Да и структура листа может выглядеть неестественно. Появляется курчавость и морщинистость поверхности.

Такая мозаичная раскраска не слишком вредит растению, но выглядит цветочек при этом неэстетично. Больше всего страдают от этой напасти пеларгония, примула, кала, бегония.

Желтуха

А вот этот вирус более опасный, чем тот, что вызывает мозаичные узоры. Он очень угнетает растение. Если цветок подхватил вирус Желтухи, то это можно определить по тому, что растение чахнет, замедляется в росте. Визуально это видно по явно жёлтым листьям и цветам некрасивой формы с изменённым окрасом лепестков.

Желтуха опасна тем, что поражает всю сосудистую систему цветка. Отмирают его клетки, потому что этот вирус вызывает гипертрофию ситовидных трубок. Нет полноценного обмена питательных веществ в организме растения. Листья растения становятся жёсткими на ощупь, ломкими, так как в них накапливается излишек крахмала. Бывает, что появляются и пятна, похожие на мозаичные.

Этот вирус очень опасен, поэтому растение лучше уничтожить, чтобы не заразились соседние цветы.

Курчавость листьев

Когда у цветка от природы листья гофрированные, махровые или курчавые – это красиво. Но если вдруг такими становятся гладкие листья, то это болезнь. Курчавость листьев проявляется вначале в виде мелких пятнышек (1-2 мм). Они высыхают, а листья при этом становятся морщинистыми (курчавыми). Цветки тоже становятся деформированными. Позже могут появиться пятна или линии серо-белой или желтоватой расцветки. Больше всего страдают от этого вируса пеларгонии,

Не все знают, что у растений тоже есть свои вирусы. Они вызывают, например, скручивание и пожелтение листьев, карликовость, листовую мозаику. А для человека эти вирусы совершенно безвредны. В последние годы учёные стали широко использовать растительные вирусы для производства фармацевтических белков.

История открытия вирусов начинается как раз с заболеваний растений. В конце XIX века российский ботаник Дмитрий Ивановский изучает в Крыму мозаичное заболевание табака. При этом заболевании на листьях появляются жёлтые пятна. Заболевшие растения малопригодны для использования в табачной промышленности. Иначе говоря, табачная мозаика может нанести ощутимый экономический ущерб. Как, кстати, и многие другие вирусные болезни растений. Ивановский обнаружил удивительную для понятий того времени особенность возбудителя мозаики табака. Ведь Луи Пастер со своими опытами уже общеизвестен, Роберт Кох открыл бациллу сибирской язвы, холерный вибрион и туберкулёзную палочку. В эти годы бактериология пышно расцветает.

В 1884 году Шарль Шамберлен изготовил специальные фильтры. Они задерживали все известные к тому времени бактерии. Жидкости, проходящие через эти фильтры, становились стерильными. Ивановский решает пропустить через эти фильтры сок заболевших растений табака. Удивительно, но неизвестный возбудитель мозаики табака фильтром не задерживался. В 1892 году Ивановский публикует результаты своих исследований. Не зная природу возбудителя болезни, он предполагает, что это фильтрующаяся бактерия или бактериальный токсин. В 1898 году голландец Мартин Бейеринк, тоже изучавший табачную мозаику, приходит к выводу, что имеет дело с инфекционным агентом нового типа. Бейеринк называет его «вирусом» от латинского слова «яд». Таким было начало вирусологии. В течение последующего десятилетия были открыты фильтрующиеся вирусы ящура, жёлтой лихорадки, оспы, бешенства, полиомиелита. Потом учёные узнали, что вирусные частицы состоят из белковой оболочки, внутри которой находится ДНК или РНК. Кстати, позже выяснилось, что существуют и фильтрующиеся бактерии – такие маленькие, что могут проходить через фильтр. Но всё это было потом. Первым открытым вирусом был растительный вирус табачной мозаики.

Люди сталкивались с вирусами растений и прежде. В классическом японском стихотворении, написанном в восьмом веке, говорится о растении посконник (Eupatorium) с типичными симптомами вирусного заболевания. На картинах голландских живописцев XVII века изображены тюльпаны пёстрых и мозаичных расцветок – и это тоже вирус. Но только в последние пару десятилетий учёные научились использовать эти вирусы. Царство вирусов многообразно. Есть огромные мимивирусы, сравнимые по размерам и числу генов с маленькими бактериями. Есть вирусы маленькие, с простым геномом. И вирусы растений как раз относятся чаще всего к последним. А это значит, что с ними работать генным инженерам удобно. Можно легко сделать на основе вирусов растений векторы с модифицированными генами. Такие рекомбинантные вирусы, попадая в растение, производят не только свои обычные белки, но и, например, фармацевтические.

Обычный набор генов вирусов растений, в том числе и вируса табачной мозаики, состоит всего из трёх функциональных групп. Первая группа отвечает за синтез нуклеиновых кислот вируса (ДНК или РНК). Вторая группа обеспечивает продукцию структурных белков, которые будут упаковывать геном вируса в частицу сферической, палочкообразной или иной формы. Чаще всего это единственный белок оболочки вируса. У вируса табачной мозаики геномная РНК упаковывана в палочку из примерно двух тысяч субъединиц этого белка. Наконец, последняя, третья группа генов обеспечивает передвижение вирусных частиц по растению. Интересно, что от растения к растению вирус переходит пассивно: с помощью насекомых или в соке через микроповреждения, возникающие, когда растения трутся друг о друга. А вот попав так в растительную клетку, дальше вирусы распространяются активно, с помощью своих специальных белков. Одни белки позволяют переходить вирусу от одной клетке к другой и, размножаясь там, постепенно захватывать весь лист. Другие (часто это структурные белки) помогают вирусу заразить сразу всё растение. Они отвечают за транспорт на длинные дистанции – вирус через сосуды растения, по которым обычно движутся вода и минеральные соли, попадает сначала в корни, потом – в самую верхушку, а потом и во все листья. То есть теоретически даже одна вирусная частица, случайно попав в растение, размножаясь там, способна за короткое время заполонить своими копиями все клетки растительного организма.

И именно это свойство вирусов растений – способность активно воспроизводиться во всём растении после первичного заражения всего одного листа – используется биотехнологами. С помощью методов генной инженерии в специально модифицированный вирусный геном вставляется ген какого-нибудь интересного белка. Для модельных опытов обычно используют зелёный флуоресцирующий белок, который светится в темноте под ультрафиолетом. В этом эксперименте за распространением вируса по растению легко наблюдать по яркому зелёному свечению. Вирус (обычно только синтезированную геномную РНК с нужными модификациями) механически вносят в растение осторожным натиранием одного листа. Он начинает там размножаться и синтезировать свои белки. В заражённом вирусом растении всегда в очень большом количестве синтезируются субъединицы белка оболочки. Поэтому как раз регулирующие элементы для синтеза этого белка удваиваются исследователями в рекомбинантном геноме вируса, и под контроль одного набора из двух ставится ген интересного учёным белка, а под контролем второго остаётся белок оболочки. Это приводит к эффективному синтезу нужного продукта. Который, когда вирус захватит всё растение, предстоит ещё выделить и очистить.

Какие же особенности и ограничения есть у этой системы производства фармацевтических белков? Уже известно, что геном вирусов растений не любит, когда вставляемые в него чужеродные гены очень большие. Лучше всего с помощью вирусных векторов синтезируются относительно маленькие белки. Если же размер гена превышает две тысячи нуклеотидов, то уровень его экспрессии невелик, а рекомбинации, то есть выщепление вставки из генома и возвращение вируса к дикому типу, происходят часто. Зато может осуществиться интересная идея производства вакцин в съедобных растениях. В этой модели к белку оболочки вируса генноинженерно присоединяется определённый полипептид-антиген. Тогда вирусная частица будет покрыта тысячами этих одинаковых антигенов, торчащих наружу. Заразив какое-нибудь съедобное растение этим вирусом, подождав, пока его будет там много, можно будет съесть это растение и получить иммунитет к серьёзному заболеванию, совместив приятное с полезным.

Этот вирус поселяется в ткани овощных и цветочных культур, где интенсивно размножается и приводит к его дальнейшей гибели. Распространение этой болезни приводит к нарушению процесса фотосинтеза.

Для того чтобы быстро избавиться от этой напасти в огороде, необходимо знать основные признаки заражения :

  1. На листьях овощей появляются беловатые разводы, лист становится обесцвеченным.
  2. Желтые пятна на листьях.
  3. Листья теряют зеленый окрас, становятся пятнистыми, клетки начинают делиться и образовывать бугорки, которые напоминают мозаику.
  4. Поверхность зараженного растения становится тонкой и подверженной к ломкости.
  5. В процессе распространения вируса листья начинают деформироваться.
  6. Плоды овощей становятся мелкими и поздно созревают.

Если игнорировать признаки заражения, то зараженная культура станет источником инфицирования и поразит здоровые особи.

Какие растения подвержены заражению?


Вирус проникает в здоровые культуры через попадания сока больного на здоровые, происходит это при:

  1. Посадка семян из зараженного ранее плода.
  2. Через попадания на растение инфицированных переносчиков клещей, нематод, тли, клопов.
  3. При высадке, прищипывании, вегетативном размножении, когда возникает высокая вероятность попадания инфекции непосредственно на растение.
  4. Проникновение инфицированного сока на инвентарь в саду, а в дальнейшем на овощные культуры механическим путем.
  5. При случайной травме растения.
  6. При переносе пыльцы.

Эта инфекция прекрасно сочетается с другими вирусами и становится пагубной, поскольку растение начинает гнить и засыхать.

Вирус долго хранится на растениях, даже зимние морозы неспособны его уничтожить.

Считается, что именно изучение ВТМ заложило основу для науки вирусологии.

Как лечить?

Вылечить вирус табачной мозаики довольно сложно, но если при первых симптомах сразу же начать принимать меры, то спасти культуру можно. При запущенных формах, растение необходимо сжечь, поскольку существует высокая вероятность переноса бактерий на здоровые особи.


Способы:

  1. При первых появлениях изменения окраса на листьях, необходимо сразу же произвести обработку, раствором молочной сыворотки (100 мл сыворотки на 1 л кипяченой воды) с добавлением любых микроудобрений.
  2. Необходимо заменить верхний слой почвы (15-20 см).
  3. Опрыскать раствором молока (1 л молока на 10 л кипяченой воды) и добавить несколько капель аптечного йода.
  4. Обработать раствором любого фунгицида.

Профилактика

Поскольку от этой болезни очень тяжело избавиться, садоводы рекомендуют соблюдать меры профилактики, для того, чтобы предупредить возникновение вируса, для этого нужно:

  1. Сажать семена только с проверенных здоровых овощей и цветов.
  2. Периодически проводить дезинфекцию всего инвентаря в саду.
  3. Ежегодно в теплицах заменять верхний слой почвы.
  4. По возможности проводить вакцинацию помидоров.
  5. Обеззараживать семена путем обработки раствора марганцовки или 20% соляной кислотой в течение 30-35 минут.
  6. Эффективно пропаривание верхнего слоя почвы на протяжении 2-3 часов.
  7. Периодически опрыскивать пасленовые растения молочным раствором.
  8. Своевременно убирать сорняки и ботву, и сжигать их.
  9. Бороться с насекомыми–вредителями.

Сорта, устойчивые к вирусу

Несмотря на то что болезнь поражает многие пасленовые культуры, существуют сорта, которые к ней устойчивы:

Несмотря на то что все сорта устойчивы к ВТМ, риск заболевания все же существует, поэтому и уход даже за этими сортами должен быть правильным.


Блиц-советы в предотвращении возникновения ВТМ:

  1. Производить посадку только здоровых семян, предварительно обработав их раствором марганцовки.
  2. Периодически обрабатывать молочным раствором или раствором сыворотки.
  3. Бороться со всеми вредителями, такими как, клещи, тля, клопы.
  4. По возможности менять ежегодно верхний слой грунта.
  5. Проводить антисептику всего инвентаря в саду.
  6. Поливать 1 раз в 2 недели слабым раствором марганцовки.
  7. Своевременно убирать и сжигать ботву, листья и сорняки на дачном участке.
  8. Опрыскивать вечером все культуры в саду раствором любых микроэлементов, для поднятия иммунитета.
  9. В конце и в начале посевного сезона пропаривать верхний слой почвы.
  10. По возможности минимизировать любые травмы овощным культурам, поскольку ВТМ передается через сок.
  11. Создать правильные условия для роста в саду (освещение, полив и др.)

Соблюдая простые меры профилактики, ВТМ будет не страшен саду. При первых появлениях заражения, необходимо начать своевременное лечение. При интенсивной форме заболевания зараженные культуры необходимо убрать с огорода и сжечь.

THE BELL

Есть те, кто прочитали эту новость раньше вас.
Подпишитесь, чтобы получать статьи свежими.
Email
Имя
Фамилия
Как вы хотите читать The Bell
Без спама